70 research outputs found
Commissioning and operation of the readout system for the solid neutrino detector
The SoLid experiment aims to measure neutrino oscillation at a baseline of 6.4 m from the BR2 nuclear reactor in Belgium. Anti-neutrinos interact via inverse beta decay (IBD), resulting in a positron and neutron signal that are correlated in time and space. The detector operates in a surface building, with modest shielding, and relies on extremely efficient online rejection of backgrounds in order to identify these interactions. A novel detector design has been developed using 12800 5 cm cubes for high segmentation. Each cube is formed of a sandwich of two scintillators, PVT and 6LiF:ZnS(Ag), allowing the detection and identification of positrons and neutrons respectively. The active volume of the detector is an array of cubes measuring 80x80x250 cm (corresponding to a fiducial mass of 1.6 T), which is read out in layers using two dimensional arrays of wavelength shifting fibres and silicon photomultipliers, for a total of 3200 readout channels. Signals are recorded with 14 bit resolution, and at 40 MHz sampling frequency, for a total raw data rate of over 2 Tbit/s. In this paper, we describe a novel readout and trigger system built for the experiment, that satisfies requirements on: compactness, low power, high performance, and very low cost per channel. The system uses a combination of high price-performance FPGAs with a gigabit Ethernet based readout system, and its total power consumption is under 1 kW. The use of zero suppression techniques, combined with pulse shape discrimination trigger algorithms to detect neutrons, results in an online data reduction factor of around 10000. The neutron trigger is combined with a large per-channel history time buffer, allowing for unbiased positron detection. The system was commissioned in late 2017, with successful physics data taking established in early 2018
Influence of wood species on toxicity of log-wood stove combustion aerosols: A parallel animal and air-liquid interface cell exposure study on spruce and pine smoke
Background
Wood combustion emissions have been studied previously either by in vitro or in vivo models using collected particles, yet most studies have neglected gaseous compounds. Furthermore, a more accurate and holistic view of the toxicity of aerosols can be gained with parallel in vitro and in vivo studies using direct exposure methods. Moreover, modern exposure techniques such as air-liquid interface (ALI) exposures enable better assessment of the toxicity of the applied aerosols than, for example, the previous state-of-the-art submerged cell exposure techniques.
Methods
We used three different ALI exposure systems in parallel to study the toxicological effects of spruce and pine combustion emissions in human alveolar epithelial (A549) and murine macrophage (RAW264.7) cell lines. A whole-body mouse inhalation system was also used to expose C57BL/6âJ mice to aerosol emissions. Moreover, gaseous and particulate fractions were studied separately in one of the cell exposure systems. After exposure, the cells and animals were measured for various parameters of cytotoxicity, inflammation, genotoxicity, transcriptome and proteome.
Results
We found that diluted (1:15) exposure pine combustion emissions (PM1 mass 7.7â±â6.5âmgâmââ3, 41âmgâMJ) contained, on average, more PM and polycyclic aromatic hydrocarbons (PAHs) than spruce (PM1 mass 4.3â±â5.1âmgâmââ3, 26âmgâMJââ1) emissions, which instead showed a higher concentration of inorganic metals in the emission aerosol. Both A549 cells and mice exposed to these emissions showed low levels of inflammation but significantly increased genotoxicity. Gaseous emission compounds produced similar genotoxicity and a higher inflammatory response than the corresponding complete combustion emission in A549 cells. Systems biology approaches supported the findings, but we detected differing responses between in vivo and in vitro experiments.
Conclusions
Comprehensive in vitro and in vivo exposure studies with emission characterization and systems biology approaches revealed further information on the effects of combustion aerosol toxicity than could be achieved with either method alone. Interestingly, in vitro and in vivo exposures showed the opposite order of the highest DNA damage. In vitro measurements also indicated that the gaseous fraction of emission aerosols may be more important in causing adverse toxicological effects. Combustion aerosols of different wood species result in mild but aerosol specific in vitro and in vivo effects
The antiinflammatory potential of phenolic compounds from Emblica officinalis L. in rat
Antiinflammatory effects of phenolic compounds from Emblica officinalis were evaluated in carrageenan and cotton pellet induced acute and chronic inflammatory animal model. Fractions of E. officinalis containing free (FPEO) and bounded (BPEO) phenolic compounds were assessed by HPLC technique. The free and bound phenolic compounds were studied for their acute and chronic antiinflammatory activity at dose level of 20 and 40Â mg/kg. The carrageenan induced acute inflammation was assessed by measuring rat paw volume at different time of intervals. Further, cotton pellet induced chronic inflammation was assessed by granulomatous tissue mass estimation along with the estimation of tissue biomarker changes (i.e. lipid peroxidation, reduced glutathione, myeloperoxidase and plasma extravasation). The results indicated that in both acute and chronic inflammation, FPEO and BPEO show reduction in the inflammation, but significant effects was observed only at high doses of both fractions which was comparable to diclofenac treated group. In conclusion, phenolic compounds of E. officinalis may serve as potential herbal candidate for amelioration of acute and chronic inflammation due to their modulatory action of free radicals
Development of a quality assurance process for the SoLid experiment
The SoLid experiment has been designed to search for an oscillation pattern induced by a light sterile neutrino state, utilising the BR2 reactor of SCKâ
CEN, in Belgium. The detector leverages a new hybrid technology, utilising two distinct scintillators in a cubic array, creating a highly segmented detector volume. A combination of 5 cm cubic polyvinyltoluene cells, with 6LiF:ZnS(Ag) sheets on two faces of each cube, facilitate reconstruction of the neutrino signals. Whilst the high granularity provides a powerful toolset to discriminate backgrounds; by itself the segmentation also represents a challenge in terms of homogeneity and calibration, for a consistent detector response. The search for this light sterile neutrino implies a sensitivity to distortions of around Script O(10)% in the energy spectrum of reactor bar nue. Hence, a very good neutron detection efficiency, light yield and homogeneous detector response are critical for data validation. The minimal requirements for the SoLid physics program are a light yield and a neutron detection efficiency larger than 40 PA/MeV/cube and 50% respectively. In order to guarantee these minimal requirements, the collaboration developed a rigorous quality assurance process for all 12800 cubic cells of the detector. To carry out the quality assurance process, an automated calibration system called CALIPSO was designed and constructed. CALIPSO provides precise, automatic placement of radioactive sources in front of each cube of a given detector plane (16Ă16 cubes). A combination of 22Na, 252Cf and AmBe gamma and neutron sources were used by CALIPSO during the quality assurance process. Initially, the scanning identified defective components allowing for repair during initial construction of the SoLid detector. Secondly, a full analysis of the calibration data revealed initial estimations for the light yield of over 60 PA/MeV and neutron reconstruction efficiency of 68%, validating the SoLid physics requirements
Performance of a full scale prototype detector at the BR2 reactor for the SoLid experiment
The SoLid collaboration has developed a new detector technology to detect electron anti-neutrinos at close proximity to the Belgian BR2 reactor at surface level. A 288 kg prototype detector was deployed in 2015 and collected data during the operational period of the reactor and during reactor shut-down. Dedicated calibration campaigns were also performed with gamma and neutron sources. This paper describes the construction of the prototype detector with a high control on its proton content and the stability of its operation over a period of several months after deployment at the BR2 reactor site. All detector cells provide sufficient light yields to achieve a target energy resolution of better than 20%/âE(MeV). The capability of the detector to track muons is exploited to equalize the light response of a large number of channels to a precision of 3% and to demonstrate the stability of the energy scale over time. Particle identification based on pulse-shape discrimination is demonstrated with calibration sources. Despite a lower neutron detection efficiency due to triggering constraints, the main backgrounds at the reactor site were determined and taken into account in the shielding strategy for the main experiment. The results obtained with this prototype proved essential in the design optimization of the final detector
Students in sight : Using mobile eye-tracking to investigate mathematics teachersâ gaze behaviour during task instruction-giving
Publisher Copyright: © 2021, European Association for Research on Learning and Instruction. All rights reserved.Mobile eye-tracking research has provided evidence both on teachers' visual attention in relation to their intentions and on teachersâ student-centred gaze patterns. However, the importance of a teacherâs eye-movements when giving instructions is unexplored. In this study we used mobile eye-tracking to investigate six teachersâ gaze patterns when they are giving task instructions for a geometry problem in four different phases of a mathematical problem-solving lesson. We analysed the teachersâ eye-tracking data, their verbal data, and classroom video recordings. Our paper brings forth a novel interpretative lens for teacherâs pedagogical intentions communicated by gaze during teacher-led moments such as when introducing new tasks, reorganizing the social structures of students for collaboration, and lesson wrap-ups. A change in the studentsâ task changes teachersâ gaze patterns, which may indicate a change in teacherâs pedagogical intention. We found that teachers gazed at students throughout the lesson, whereas teachersâ focus was at task-related targets during collaborative instruction-giving more than during the introductory and reflective task instructions. Hence, we suggest two previously not detected gaze types: contextualizing gaze for task readiness and collaborative gaze for task focus to contribute to the present discussion on teacher gaze.Peer reviewe
- âŠ