25 research outputs found

    More stories on Th17 cells

    Get PDF
    For more than two decades, immunologists have been using the so-called Th1/Th2 paradigm to explain most of the phenomena related to adaptive immunity. the Th1/Th2 paradigm implied the existence of two different, mutually regulated, CD4(+) T helper subsets: Th1 cells, driving cell-mediated immune responses involved in tissue damage and fighting infection against intracellular parasites; and Th2 cells that mediate IgE production and are particularly involved in eosinophilic inflammation, allergy and clearance of helminthic infections. A third member of the T helper set, IL-17-producing CD4(+) T cells, now called Th17 cells, was recently described as a distinct lineage that does not share developmental pathways with either Th1 or Th2 cells. the Th17 subset has been linked to autoimmune disorders, being able to produce IL-17, IL-17F and IL-21 among other inflammatory cytokines. Interestingly, it has been reported that there is not only a cross-regulation among Th1, Th2 and Th17 effector cells but there is also a dichotomy in the generation of Th17 and T regulatory cells. Therefore, Treg and Th17 effector cells arise in a mutually exclusive fashion, depending on whether they are activated in the presence of TGF-beta or TGF-beta plus inflammatory cytokines such as IL-6. This review will address the discovery of the Th17 cells, and recent progress on their development and regulation.Crohn's and Colitis Foundation of AmericaNIHLa Jolla Inst Allergy & Immunol, La Jolla, CA 92037 USAUniversidade Federal de São Paulo, Dept Microbiol Immunol & Parasitol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Microbiol Immunol & Parasitol, São Paulo, BrazilNIH: RO1 AI050265-06Web of Scienc

    PET–CT Promising in animal studies

    No full text

    Loss of phosphoinositide 3-kinase γ decreases migration and activation of phagocytes but not T cell activation in antigen-induced arthritis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phosphoinositide 3-kinase γ (PI3Kγ) has been depicted as a major regulator of inflammatory processes, including leukocyte activation and migration towards several chemokines. This study aims to explore the role of PI3Kγ in the murine model of antigen-induced arthritis (AIA).</p> <p>Methods</p> <p>Development of AIA was investigated in wildtype and PI3Kγ-deficient mice as well as in mice treated with a specific inhibitor of PI3Kγ (AS-605240) in comparison to untreated animals. Inflammatory reactions of leukocytes, including macrophage and T cell activation, and macrophage migration, were studied <it>in vivo </it>and <it>in vitro</it>.</p> <p>Results</p> <p>Genetic deletion or pharmacological inhibition of PI3Kγ induced a marked decrease of clinical symptoms in early AIA, together with a considerably diminished macrophage migration and activation (lower production of NO, IL-1β, IL-6). Also, macrophage and neutrophil infiltration into the knee joint were impaired <it>in vivo</it>. However, T cell functions, measured by cytokine production (TNFα, IFNγ, IL-2, IL-4, IL-5, IL-17) <it>in vitro </it>and DTH reaction <it>in vivo </it>were not altered, and accordingly, disease developed normally at later timepoints</p> <p>Conclusion</p> <p>PI3Kγ specifically affects phagocyte function in the AIA model but has no impact on T cell activation.</p
    corecore