3,689 research outputs found
The origin of sub-surface source waters define the sea-air flux of methane in the Mauritanian Upwelling, NW Africa
Concentrations and flux densities of methane were determined during a lagrangian study of an advective filament in the permanent upwelling region off western Mauritania. Newly upwelled waters were dominated by the presence of North Atlantic Central Water and surface CH4 concentrations of 2.2 ± 0.3 nmol L-1 were largely in equilibrium with atmospheric values, with surface saturations of 101.7 ± 14%. As the upwelling filament aged and was advected offshore, CH4 enriched South Atlantic Central Water from intermediate depths of 100 to 350m was entrained into the surface mixed layer of the filament following intense mixing associated with the shelf break. Surface saturations increased to 198.9 ± 15% and flux densities increased from a mean value over the shelf of 2.0 ± 1.1 ”mol m-2d-1 to a maximum of 22.6 ”mol m-2d-1. Annual CH4 emissions for this persistent filament were estimated at 0.77 ± 0.64 Gg which equates to a maximum of 0.35% of the global oceanic budget. This raises the known outgassing intensity of this area and highlights the importance of advecting filaments from upwelling waters as efficient vehicles for air-sea exchange
The influence of ocean acidification on nitrogen regeneration and nitrous oxide production in the North-West European shelf sea
The assimilation and regeneration of dissolved inorganic nitrogen, and the concentration of N2O, was investigated at stations located in the NW European shelf sea during June/July 2011. These observational measurements within the photic zone demonstrated the simultaneous regeneration and assimilation of NH4+, NO2â and NO3â. NH4+ was assimilated at 1.82â49.12 nmol N Lâ1 hâ1 and regenerated at 3.46â14.60 nmol N Lâ1 hâ1; NO2â was assimilated at 0â2.08 nmol N Lâ1 hâ1 and regenerated at 0.01â1.85 nmol N Lâ1 hâ1; NO3â was assimilated at 0.67â18.75 nmol N Lâ1 hâ1 and regenerated at 0.05â28.97 nmol N Lâ1 hâ1. Observations implied that these processes were closely coupled at the regional scale and nitrogen recycling played an important role in sustaining phytoplankton growth during the summer. The [N2O], measured in water column profiles, was 10.13 ± 1.11 nmol Lâ1 and did not strongly diverge from atmospheric equilibrium indicating that sampled marine regions where neither a strong source nor sink of N2O to the atmosphere. Multivariate analysis of data describing water column biogeochemistry and its links to N-cycling activity failed to explain the observed variance in rates of N-regeneration and N-assimilation, possibly due to the limited number of process rate observations. In the surface waters of 5 further stations, Ocean Acidification (OA) bioassay experiments were conducted to investigate the response of NH4+ oxidising and regenerating organisms to simulated OA conditions, including the implications for [N2O]. Multivariate analysis was undertaken which considered the complete bioassay dataset of measured variables describing changes in N-regeneration rate, [N2O] and the biogeochemical composition of seawater. While anticipating biogeochemical differences between locations, we aimed to test the hypothesis that the underlying mechanism through which pelagic N-regeneration responded to simulated OA conditions was independent of location and that a mechanistic understanding of how NH4+ oxidation, NH4+ regeneration and N2O production responded to OA could be developed. Results indicated that N-regeneration process responses to OA treatments were location specific; no mechanistic understanding of how N-regeneration processes respond to OA in the surface ocean of the NW European shelf sea could be developed
Modeling the Seasonality and Controls of Nitrous Oxide Emissions on the Northwest European Continental Shelf
Estimates of oceanic emissions of nitrous oxide (N2O) are surrounded by a considerable degree of uncertainty, particularly regarding the contribution of productive shelf regions, where assessments are based on limited observations. In this paper, we have applied a coupled hydrodynamicâbiogeochemical model resolving N2O dynamics to estimate N2O emissions within the northwest European continental shelf. Based on 10âyear average distributions (2006â2015), dominant seasonal patterns of N2O airâsea exchange were identified. Within the southwest region of the shelf and deep parts of the North Sea, emissions are highest during winter. Peak emissions during late autumn are typical for the northwest part of the shelf and central North Sea, while in the western English Channel, Irish Sea and western North Sea peak outflux shifts toward early autumn. Within these regions, most N2O production occurs below the seasonal pycnocline, and duration and intensity of stratification defines the timing and rate of its subsequent release to the atmosphere. In contrast, within the southeast North Sea and most of the coastal areas, lack of stratification allows the excess N2O to outgas as soon as it is produced, driven by ammonium availability, resulting in peak emissions in summer. We estimate that N2O emissions from the northwest European shelf contribute 0.02224 Tg N to the atmosphere annually, that is, between 3.3â6.8% of total emissions from European shelves and estuaries
Association of Relative Age in the School Year With Diagnosis of Intellectual Disability, Attention-Deficit/Hyperactivity Disorder, and Depression
IMPORTANCE: Young relative age within the school year has previously been associated with attention-deficit/hyperactivity disorder (ADHD) diagnosis and, based on limited evidence, diagnosis of intellectual disability. No study to date has examined the association between relative age and diagnosis of depression. OBJECTIVE: To estimate the associations with intellectual disability and ADHD and investigate a potential novel association between relative age and childhood depression. DESIGN, SETTING, AND PARTICIPANTS: This population-based cohort study of 1âŻ042âŻ106 children aged 4 to 15 years used electronic record data collected before January 3, 2017, from more than 700 general practices contributing to the UK Clinical Practice Research Datalink. Multivariable Cox proportional hazards regression modeling was used to explore the association between relative age and the incidence of intellectual disability, ADHD, and depression before age 16 years. Data were analyzed between July 2017 and January 2019. EXPOSURES: Relative age within school year determined by month of birth and categorized into four 3-month groups. MAIN OUTCOMES AND MEASURES: Intellectual disability, ADHD, and depression. RESULTS: In the total cohort of 1âŻ042âŻ106 children, 532âŻ876 were male (51.1%) and the median age at study entry was 4.0 years (interquartile range, 4.0-5.0). There was evidence that being born in the last quarter of the school year (ie, being the youngest group in a school year) was associated with diagnosis of intellectual disability (adjusted hazard ratio [aHR], 1.30; 95% CI, 1.18-1.42), ADHD (aHR, 1.36; 95% CI, 1.28-1.45), and depression (aHR, 1.31; 95% CI, 1.08-1.59) compared with being born in the first quarter. A graded association was seen with intermediate age groups at a smaller increased risk of each diagnosis compared with the oldest group, with aHRs for intellectual disability for those born in the second quarter of 1.06 (95% CI, 0.96-1.17) and for those born in the third quarter of 1.20 (95% CI, 1.09-1.32); aHRs for ADHD for those born in the second quarter of 1.15 (95% CI, 1.08-1.23) and for those born in the third quarter of 1.31 (95% CI, 1.23-1.40); and aHRs for depression for those born in the second quarter of 1.05 (95% CI, 0.85-1.29) and for those born in the third quarter of 1.13 (95% CI, 0.92-1.38). CONCLUSIONS AND RELEVANCE: In this study, relative youth status in the school year is associated with an increased risk of diagnosis of ADHD, intellectual disability, and depression in childhood. Further research into clinical and policy interventions to minimize these associations appears to be needed
Recommended from our members
The inhibition of N2O production by ocean acidification in cold temperate and polar waters
The effects of ocean acidification (OA) on nitrous oxide (N2O) production and on the community composition of ammonium oxidizing archaea (AOA) were examined in the northern and southern sub-polar and polar Atlantic Ocean. Two research cruises were performed during June 2012 between the North Sea and Arctic Greenland and Barent Seas, and in JanuaryâFebruary 2013 to the Antarctic Scotia Sea. Seven stations were occupied in all during which shipboard experimental manipulations of the carbonate chemistry were performed through additions of NaHCO3â+HCl in order to examine the impact of short-term (48 h for N2O and between 96 and 168 h for AOA) exposure to control and elevated conditions of OA. During each experiment, triplicate incubations were performed at ambient conditions and at 3 lowered levels of pH which varied between 0.06 and 0.4 units according to the total scale and which were targeted at CO2 partial pressures of ~500, 750 and 1000 ”atm. The AOA assemblage in both Arctic and Antarctic regions was dominated by two major archetypes that represent the marine AOA clades most often detected in seawater. There were no significant changes in AOA assemblage composition between the beginning and end of the incubation experiments. N2O production was sensitive to decreasing pHT at all stations and decreased by between 2.4% and 44% with reduced pHT values of between 0.06 and 0.4. The reduction in N2O yield from nitrification was directly related to a decrease of between 28% and 67% in available NH3 as a result of the pH driven shift in the NH3:NH4+ equilibrium. The maximum reduction in N2O production at conditions projected for the end of the 21st century was estimated to be 0.82 Tg N yâ1
Symptoms and quality of life in late stage Parkinson syndromes: a longitudinal community study of predictive factors
BACKGROUND
Palliative care is increasingly offered earlier in the cancer trajectory but rarely in Idiopathic Parkinson's Disease(IPD), Progressive Supranuclear Palsy(PSP) or Multiple System Atrophy(MSA). There is little longitudinal data of people with late stage disease to understand levels of need. We aimed to determine how symptoms and quality of life of these patients change over time; and what demographic and clinical factors predicted changes.
METHODS
We recruited 82 patients into a longitudinal study, consenting patients with a diagnosis of IPD, MSA or PSP, stages 3-5 Hoehn and Yahr(H&Y). At baseline and then on up to 3 occasions over one year, we collected self-reported demographic, clinical, symptom, palliative and quality of life data, using Parkinson's specific and generic validated scales, including the Palliative care Outcome Scale (POS). We tested for predictors using multivariable analysis, adjusting for confounders.
FINDINGS
Over two thirds of patients had severe disability, over one third being wheelchair-bound/bedridden. Symptoms were highly prevalent in all conditions - mean (SD) of 10.6(4.0) symptoms. More than 50% of the MSA and PSP patients died over the year. Over the year, half of the patients showed either an upward (worsening, 24/60) or fluctuant (8/60) trajectory for POS and symptoms. The strongest predictors of higher levels of symptoms at the end of follow-up were initial scores on POS (AOR 1.30; 95%CI:1.05-1.60) and being male (AOR 5.18; 95% CI 1.17 to 22.92), both were more predictive than initial H&Y scores.
INTERPRETATION
The findings point to profound and complex mix of non-motor and motor symptoms in patients with late stage IPD, MSA and PSP. Symptoms are not resolved and half of the patients deteriorate. Palliative problems are predictive of future symptoms, suggesting that an early palliative assessment might help screen for those in need of earlier intervention
Surface ocean carbon dioxide during the Atlantic Meridional Transect (1995â2013); evidence of ocean acidification
Here we present more than 21,000 observations of carbon dioxide fugacity in air and seawater (fCO2) along the Atlantic Meridional Transect (AMT) programme for the period 1995â2013. Our dataset consists of 11 southbound and 2 northbound cruises in boreal autumn and spring respectively. Our paper is primarily focused on change in the surface-ocean carbonate system during southbound cruises. We used observed fCO2 and total alkalinity (TA), derived from salinity and temperature, to estimate dissolved inorganic carbon (DIC) and pH (total scale). Using this approach, estimated pH was consistent with spectrophotometric measurements carried out on 3 of our cruises. The AMT cruises transect a range of biogeographic provinces where surface Chlorophyll-a spans two orders of magnitude (mesotrophic high latitudes to oligotrophic subtropical gyres). We found that surface Chlorophyll-a was negatively correlated with fCO2, but that the deep chlorophyll maximum was not a controlling variable for fCO2. Our data show clear evidence of ocean acidification across 100ïżœ of latitude in the Atlantic Ocean. Over the period 1995â2013 we estimated annual rates of change in: (a) sea surface temperature of 0.01 ± 0.05 ïżœC, (b) seawater fCO2 of 1.44 ± 0.84 latm, (c) DIC of 0.87 ± 1.02 lmol per kg and (d) pH of ïżœ0.0013 ± 0.0009 units. Monte Carlo simulations propagating the respective analytical uncertainties showed that the latter were < 5% of the observed trends. Seawater fCO2 increased at the same rate as atmospheric CO2
The wavelet-NARMAX representation : a hybrid model structure combining polynomial models with multiresolution wavelet decompositions
A new hybrid model structure combing polynomial models with multiresolution wavelet decompositions is introduced for nonlinear system identification. Polynomial models play an important role in approximation theory, and have been extensively used in linear and nonlinear system identification. Wavelet decompositions, in which the basis functions have the property of localization in both time and frequency, outperform many other approximation schemes and offer a flexible solution for approximating arbitrary functions. Although wavelet representations can approximate even severe nonlinearities in a given signal very well, the advantage of these representations can be lost when wavelets are used to capture linear or low-order nonlinear behaviour in a signal. In order to sufficiently utilise the global property of polynomials and the local property of wavelet representations simultaneously, in this study polynomial models and wavelet decompositions are combined together in a parallel structure to represent nonlinear input-output systems. As a special form of the NARMAX model, this hybrid model structure will be referred to as the WAvelet-NARMAX model, or simply WANARMAX. Generally, such a WANARMAX representation for an input-output system might involve a large number of basis functions and therefore a great number of model terms. Experience reveals that only a small number of these model terms are significant to the system output. A new fast orthogonal least squares algorithm, called the matching pursuit orthogonal least squares (MPOLS) algorithm, is also introduced in this study to determine which terms should be included in the final model
Biological nitrous oxide consumption in oxygenated waters of the high latitude Atlantic Ocean
Nitrous oxide (N2O) is important to the global radiative budget of the atmosphere and contributes to the depletion of stratospheric ozone. Globally the ocean represents a large net ïŹux of N2O to the atmosphere but the direction of this ïŹux varies regionally. Our understanding of N2O production and consumption processes in the ocean remains incomplete. Traditional understanding tells us that anaerobic denitriïŹcation, the reduction of NO3â to N2 with N2O as an intermediate step, is the sole biological means of reducing N2O, a process known to occur in anoxic environments only. Here we present experimental evidence of N2O removal under fully oxygenated conditions, coupled with observations of bacterial communities with novel, atypical gene sequences for N2O reduction. The focus of this work was on the high latitude Atlantic Ocean where we show bacterial consumption sufïŹcient to account for oceanic N2O depletion and the occurrence of regional sinks for atmospheric N2O
Testing for hybridisation of the Critically Endangered Iguana delicatissima on Anguilla to inform conservation efforts
The Caribbean Island of Anguilla in the north-eastern Lesser Antilles is home to one of the last populations of the Critically Endangered Lesser Antillean iguana Iguana delicatissima. This population is highly threatened primarily because of hybridisation with non-native Iguana iguana. This study assesses the degree of hybridisation between Anguillaâs Iguana species firstly using morphological characteristics and then genetic analysis to validate the genetic integrity of morphologically identified I. delicatissima. We also examined the genetic diversity of Anguillaâs I. delicatissima population, and that of a population on the nearby island of Ălet Fourchue, St BarthĂ©lemy. Forty-five iguanas were captured in Anguilla and 10 in St BarthĂ©lemy, and sequences from 3 nuclear and 1 mtDNA genes were obtained for each. Of the 45 iguanas captured in Anguilla, 22 were morphologically identified as I. delicatissima, 12 as I. iguana and the remainder were identified as hybrids. Morphological assignments were all confirmed by genetic analyses except for one I. iguana and one hybrid individual. These two individuals appeared likely to have originated following ancestral hybridisation events several generations ago. A significant paucity of genetic diversity was found within Anguillan and St BarthĂ©lemy I. delicatissima populations, with a single haplotype being identified for each of the three nuclear genes and the mtDNA sequence. This study highlights the urgency for immediate action to conserve Anguillaâs remnant I. delicatissima population. Protection from hybridisation will require translocation to I. iguana-free offshore cays, with supplementary individuals being sourced from neighbouring islands to enhance the genetic diversity of the population
- âŠ