1,501 research outputs found

    Nuclear structure study around Z=28

    Full text link
    Yrast levels of Ni, Cu and Zn isotopes for 40N5040 \leq N \leq50 have been described by state-of-the-art shell model calculations with three recently available interactions using 56^{56}Ni as a core in the f5/2pg9/2f_{5/2}pg_{9/2} model space. The results are unsatisfactory viz. large E(2+)E(2^+) for very neutron rich nuclei, small B(E2) values in comparison to experimental values. These results indicate an importance of inclusion of πf7/2\pi f_{7/2} and νd5/2\nu d_{5/2} orbitals in the model space to reproduce collectivity in this region.Comment: 12 pages, 14 figure

    Role of defects in the electronic properties of amorphous/crystalline Si interface

    Full text link
    The mechanism determining the band alignment of the amorphous/crystalline Si heterostructures is addressed with direct atomistic simulations of the interface performed using a hierarchical combination of various computational schemes ranging from classical model-potential molecular dynamics to ab-initio methods. We found that in coordination defect-free samples the band alignment is almost vanishing and independent on interface details. In defect-rich samples, instead, the band alignment is sizeably different with respect to the defect-free case, but, remarkably, almost independent on the concentration of defects. We rationalize these findings within the theory of semiconductor interfaces.Comment: 4 pages in two-column format, 2 postscript figures include

    Using bond-length dependent transferable force constants to predict vibrational entropies in Au-Cu, Au-Pd, and Cu-Pd alloys

    Get PDF
    A model is tested to rapidly evaluate the vibrational properties of alloys with site disorder. It is shown that length-dependent transferable force constants exist, and can be used to accurately predict the vibrational entropy of substitutionally ordered and disordered structures in Au-Cu, Au-Pd, and Cu-Pd. For each relevant force constant, a length- dependent function is determined and fitted to force constants obtained from first-principles pseudopotential calculations. We show that these transferable force constants can accurately predict vibrational entropies of L12_{2}-ordered and disordered phases in Cu3_{3}Au, Au3_{3}Pd, Pd3_{3}Au, Cu3_{3}Pd, and Pd3_{3}Au. In addition, we calculate the vibrational entropy difference between L12_{2}-ordered and disordered phases of Au3_{3}Cu and Cu3_{3}Pt.Comment: 9 pages, 6 figures, 3 table

    Thermodynamic properties of binary HCP solution phases from special quasirandom structures

    Get PDF
    Three different special quasirandom structures (SQS) of the substitutional hcp A1xBxA_{1-x}B_x binary random solutions (x=0.25x=0.25, 0.5, and 0.75) are presented. These structures are able to mimic the most important pair and multi-site correlation functions corresponding to perfectly random hcp solutions at those compositions. Due to the relatively small size of the generated structures, they can be used to calculate the properties of random hcp alloys via first-principles methods. The structures are relaxed in order to find their lowest energy configurations at each composition. In some cases, it was found that full relaxation resulted in complete loss of their parental symmetry as hcp so geometry optimizations in which no local relaxations are allowed were also performed. In general, the first-principles results for the seven binary systems (Cd-Mg, Mg-Zr, Al-Mg, Mo-Ru, Hf-Ti, Hf-Zr, and Ti-Zr) show good agreement with both formation enthalpy and lattice parameters measurements from experiments. It is concluded that the SQS's presented in this work can be widely used to study the behavior of random hcp solutions.Comment: 15 pages, 8 figure

    The cash crop revolution, colonialism and economic reorganization in Africa

    Get PDF
    In the 19th and 20th centuries, African economies experienced a significant structural transformation from the slave trades to commercial agriculture. We analyze the long-run impact of this economic transition focusing on the dynamic effects of: shifting geographic fundamentals to favor agroclimatic suitability for cash crops; infrastructural investments to reduce trade costs; and external forward production linkages. Using agro-climatic suitability scores and historical data on the source location of more than 95 percent of all exports across 38 African states, we assess the consequences of these changes on economic reorganization across the continent. We find that colonial cash crop production had positive long-run effects on urbanization, road infrastructure, nighttime luminosity, and household wealth. These effects rival or surpass other geographic and historical forces. Exploring causal mechanisms, we show that path dependence due to colonial infrastructure investments is the more important channel than continued advantages in agricultural productivity. However, these agglomerating effects were highly localized; we find limited evidence that commercial agriculture spurred broader regional growth, in contrast to other cash crop regions around the world. If anything, we observe in Africa the economic gains accruing to cash crop zones came at the expense of nearby areas, which are worse off today than expected based on underlying characteristics. Overall, our analysis has important implications for the debate on the long-run effects of colonialism on development in the region. Rather than offsetting negative institutional effects, subnational extractive processes may have reinforced them by sowing economic and social inequalities

    Physics and chemistry of hydrogen in the vacancies of semiconductors

    Get PDF
    Hydrogen is well known to cause electrical passivation of lattice vacancies in semiconductors. This effect follows from the chemical passivation of the dangling bonds. Recently it was found that H in the carbon vacancy of SiC forms a three-center bond with two silicon neighbors in the vacancy, and gives rise to a new electrically active state. In this paper we examine hydrogen in the anion vacancies of BN, AlN, and GaN. We find that three-center bonding of H is quite common and follows clear trends in terms of the second-neighbor distance in the lattice, the typical (two-center) hydrogen-host-atom bond length, the electronegativity difference between host atoms and hydrogen, as well as the charge state of the vacancy. Three-center bonding limits the number of H atoms a nitrogen vacancy can capture to two, and prevents electric passivation in GaAs as well

    Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors

    Full text link
    Using first-principles electronic structure calculations we identify the anion vacancies in II-VI and chalcopyrite Cu-III-VI2 semiconductors as a class of intrinsic defects that can exhibit metastable behavior. Specifically, we predict persistent electron photoconductivity (n-type PPC) caused by the oxygen vacancy VO in n-ZnO, and persistent hole photoconductivity (p-type PPC) caused by the Se vacancy VSe in p-CuInSe2 and p-CuGaSe2. We find that VSe in the chalcopyrite materials is amphoteric having two "negative-U" like transitions, i.e. a double-donor transition e(2+/0) close to the valence band and a double-acceptor transition e(0/2-) closer to the conduction band. We introduce a classification scheme that distinguishes two types of defects (e.g., donors): type-alpha, which have a defect-localized-state (DLS) in the gap, and type-beta, which have a resonant DLS within the host bands (e.g., conduction band). In the latter case, the introduced carriers (e.g., electrons) relax to the band edge where they can occupy a perturbed-host-state (PHS). Type alpha is non-conducting, whereas type beta is conducting. We identify the neutral anion vacancy as type-alpha and the doubly positively charged vacancy as type-beta. We suggest that illumination changes the charge state of the anion vacancy and leads to a crossover between alpha- and beta-type behavior, resulting in metastability and PPC. In CuInSe2, the metastable behavior of VSe is carried over to the (VSe-VCu) complex, which we identify as the physical origin of PPC observed experimentally. We explain previous puzzling experimental results in ZnO and CuInSe2 in the light of this model.Comment: submitted to Phys. Rev.

    Shape Isomerism at N = 40: Discovery of a Proton Intruder in 67Co

    Full text link
    The nuclear structure of 67Co has been investigated through 67Fe beta-decay. The 67Fe isotopes were produced at the LISOL facility in proton-induced fission of 238U and selected using resonant laser ionization combined with mass separation. The application of a new correlation technique unambiguously revealed a 496(33) ms isomeric state in 67Co at an unexpected low energy of 492 keV. A 67Co level scheme has been deduced. Proposed spin and parities suggest a spherical (7/2-) 67Co ground state and a deformed first excited (1/2-) state at 492 keV, interpreted as a proton 1p-2h prolate intruder state.Comment: 4 pages, 5 figures, preprint submitted to Physical Review Letter

    Electric fields and valence band offsets at strained [111] heterojunctions

    Full text link
    [111] ordered common atom strained layer superlattices (in particular the common anion GaSb/InSb system and the common cation InAs/InSb system) are investigated using the ab initio full potential linearized augmented plane wave (FLAPW) method. We have focused our attention on the potential line-up at the two sides of the homopolar isovalent heterojunctions considered, and in particular on its dependence on the strain conditions and on the strain induced electric fields. We propose a procedure to locate the interface plane where the band alignment could be evaluated; furthermore, we suggest that the polarization charges, due to piezoelectric effects, are approximately confined to a narrow region close to the interface and do not affect the potential discontinuity. We find that the interface contribution to the valence band offset is substantially unaffected by strain conditions, whereas the total band line-up is highly tunable, as a function of the strain conditions. Finally, we compare our results with those obtained for [001] heterojunctions.Comment: 18 pages, Latex-file, to appear in Phys.Rev.

    Eculizumab is a safe and effective treatment in pediatric patients with atypical hemolytic uremic syndrome

    Get PDF
    Atypical hemolytic uremic syndrome (aHUS) is caused by alternative complement pathway dysregulation, leading to systemic thrombotic microangiopathy (TMA) and severe end-organ damage. Based on 2 prospective studies in mostly adults and retrospective data in children, eculizumab, a terminal complement inhibitor, is approved for aHUS treatment. Here we prospectively evaluated efficacy and safety of weight-based dosing of eculizumab in eligible pediatric patients with aHUS in an open-label phase II study. The primary end point was complete TMA response by 26 weeks. Twenty-two patients (aged 5 months-17 years) were treated; 16 were newly diagnosed, 12 had no prior plasma exchange/infusion during current TMA symptomatology, 11 received baseline dialysis, and 2 had prior renal transplants. By week 26, 14 achieved a complete TMA response, 18 achieved hematologic normalization, and 16 had 25% or better improvement in serum creatinine. Plasma exchange/infusion was discontinued in all, and 9 of the 11 patients who required dialysis at baseline discontinued, whereas none initiated new dialysis. Eculizumab was well tolerated; no deaths or meningococcal infections occurred. Bone marrow failure, wrist fracture, and acute respiratory failure were reported as unrelated severe adverse events. Thus, our findings establish the efficacy and safety of eculizumab for pediatric patients with aHUS and are consistent with proposed immediate eculizumab initiation following diagnosis in children
    corecore