The mechanism determining the band alignment of the amorphous/crystalline
Si heterostructures is addressed with direct atomistic simulations of the
interface performed using a hierarchical combination of various computational
schemes ranging from classical model-potential molecular dynamics to ab-initio
methods. We found that in coordination defect-free samples the band alignment
is almost vanishing and independent on interface details. In defect-rich
samples, instead, the band alignment is sizeably different with respect to the
defect-free case, but, remarkably, almost independent on the concentration of
defects. We rationalize these findings within the theory of semiconductor
interfaces.Comment: 4 pages in two-column format, 2 postscript figures include