142 research outputs found
Long-distance migration and venting of methane from the base of the hydrate stability zone
\ua9 2023, The Author(s).Marine methane hydrate is an ice-like substance that is stable in sediment around marine continental margins where water depths are greater than ~450â700 m. The release of methane due to melting of hydrates is considered to be a mechanism for past global carbon-cycle perturbations and could exacerbate ongoing anthropogenic climate change. Increases in bottom-water temperature at the landward limit of marine hydrate around continental margins, where vulnerable hydrate exists at or below the seabed, cause methane to vent into the ocean. However, this setting represents only ~3.5% of the global hydrate reservoir. The potential for methane from hydrate in deeper water to reach the atmosphere was considered negligible. Here we use three-dimensional (3D) seismic imagery to show that, on the Mauritanian margin, methane migrated at least 40 km below the base of the hydrate stability zone and vented through 23 pockmarks at the shelf break, probably during warmer Quaternary interglacials. We demonstrate that, under suitable circumstances, some of the 96.5% of methane bound in deeper water distal hydrates can reach the seafloor and vent into the ocean beyond the landward limit of marine hydrate. This reservoir should therefore be considered for estimating climate change-induced methane release during a warming world
Prolonged post-rift magmatism on highly extended crust of divergent continental margins (Baiyun Sag, South China Sea)
Three-dimensional (3D) seismic, borehole and geochemical data reveal a prolonged phase of post-rift magmatism on highly extended crust of the Baiyun Sag, South China Sea. Two volcanic complexes are identified and described in the context of continental rifting and diachronous continental breakup of the South China Sea. Biostratigraphic data from exploration wells BY7-1 and BY2, complemented by KâAr datings from core samples, confirm that magmatic activity in the Baiyun Sag occurred in two main stages: (1) a first episode at the base of the Miocene (23.8 Ma); and (2) a second episode occurring at the end of the Early Miocene (17.6 Ma). The relative location of volcanic complexes in the Baiyun Sag, and their stratigraphic position, reveals prolonged magmatism inboard of the oceanâcontinent transition zone during continental breakup. We suggest that magmatism in the Baiyun Sag reflects progressive continental breakup in the South China Sea, with the last volcanic episode marking the end of a breakup sequence representing the early post-rift tectonic events associated with the continental breakup process. Seismic and borehole data from this breakup sequence records diachronous magma emplacement and complex changes in depositional environments during continental breakup
Regional Exploration and Characterisation of CO 2 Storage Prospects in the Utsira-Skade Aquifer, North Viking Graben, North Sea
From Frontiers via Jisc Publications RouterHistory: collection 2021, received 2021-03-12, accepted 2021-09-03, epub 2021-10-04Publication status: PublishedSubsurface CO2 storage is considered a key element of reducing anthropogenic emissions in virtually all scenarios compatible with limiting global warming to 1.5°C. The Utsira-Skade Aquifer (Utsira, Eir and Skade Formations), northern North Sea, has been identified as a suitable reservoir. Although the overall storage capacity of the full aquifer has been estimated based on regional data, it is lacking an integrated assessment of containment and internal heterogeneity, to identify optimal areas for injection and for calculation of site-specific storage capacities. A high-resolution, broadband 3D seismic reflection dataset, full waveform inverted velocity data and 102 exploration wells are utilised to provide a catalogue of CO2 storage prospects in the northern Utsira-Skade Aquifer. This is achieved through: 1) definition of the aquiferâs spatial limits; 2) calculation of porosity distribution; 3) assessment of the extent, geomorphology, thickness variability, and containment confidence (CC) of mudstones; and 4) mapping of closures through fill-to-spill simulations. CO2 storage capacity was calculated for the prospects using two approaches; using the full reservoir thickness (FRT) beneath the closures and using only the thickness from the closure top to the spill point (TSP), i.e., within structural traps. Porosity ranges from 29 to 39% across the aquifer and is higher in the Utsira and Eir Fms. relative to the underlying Skade Fm. The mudstone separating the Skade and Eir/Utsira Fm. has a thickness > 50 m, and is a potential barrier for CO2. Other intra-aquifer mudstones were mainly interpreted to act as baffles to flow. Structural traps at the top Utsira and Skade Fms. yield fifteen prospects, with criteria of > 700 m depth and FRT storage capacity of > 5 Mt CO2. They have a combined storage capacity of 330 Mt CO2 (FRT) or 196 Mt CO2 (TSP). Five prospects have a positive CC score (total capacity: 54 Mt CO2 FRT or 39 Mt CO2 TSP). Additional storage capacity could be achieved through more detailed analysis of the seal to upgrade the CC scores, or through use of a network of the mapped closures with a fill-to-spill approach, utilising more of the aquifer
Seismic volcanostratigraphy of the western Indian rifted margin: The pre-Deccan igneous province
The Indian Plate has been the focus of intensive research concerning the flood basalts of the Deccan Traps. Here we document a volcanostratigraphic analysis of the offshore segment of the western Indian volcanic large igneous province, between the shoreline and the first magnetic anomaly (An 28 âŒ63 Ma). We have mapped the different crustal domains of the NW Indian Ocean from stretched continental crust through to oceanic crust, using seismic reflection and potential field data. Two volcanic structures, the Somnath Ridge and the Saurashtra High, are identified, extending âŒ305 km NE-SW in length and 155 km NW-SE in width. These show the internal structures of buried shield volcanoes and hyaloclastic mounds, surrounded by mass-wasting deposits and volcanic sediments. The structures observed resemble seismic images from the North Atlantic and northwest Australia, as well as volcanic geometries described for Runion and Hawaii. The geometry and internal seismic facies within the volcanic basement suggest a tholeiitic composition and subaerial to shallow marine emplacement. At the scale of the western Indian Plate, the emplacement of this volcanic platform is constrained by structural lineations associated with rifting. By reviewing the volcanism in the Indian Ocean and plate reconstruction of the area, the timing of the volcanism can be associated with eruption of a pre-Deccan continental flood basalt (âŒ75-65.5 Ma). The volcanic platform in this study represents an addition of 19-26.5% to the known volume of the West Indian Volcanic Province. Copyright 2011 by the American Geophysical Union
A persistent Norwegian Atlantic Current through the Pleistocene glacials
Changes in oceanâcirculation regimes in the northern North Atlantic and the Nordic Seas may affect not only the Arctic but potentially hemispheric or even global climate. Therefore, unraveling the longâterm evolution of the North Atlantic CurrentâNorwegian Atlantic Current system through the Pleistocene glaciations could yield useful information and climatological context for understanding contemporary changes. In this work, ~50,000 km2 of 3âD seismic reflection data are used to investigate the Pleistocene stratigraphy for evidence of paleoâoceanographic regimes on the midâNorwegian margin since 2.58 Ma. Across 33 semicontinuous regional paleoâseafloor surfaces ~17,500 iceberg scours have been mapped. This mapping greatly expands our spatiotemporal understanding of currents and iceberg presence in the eastern Nordic Seas. The scours display a dominant southwestânortheast trend that complements previous sedimentological and numerical modeling studies that suggest northwardâflowing currents in the Norwegian Sea during the Pleistocene. This paleoâoceanographic study suggests that through many of the Pleistocene glaciations, the location of surface ocean currents in the Norwegian Sea and, by extension, the eastern North Atlantic, were broadly similar to the present
A regional CO 2 containment assessment of the northern Utsira Formation seal and overburden, northern North Sea
From Wiley via Jisc Publications RouterHistory: received 2020-12-31, accepted 2021-01-05, pub-electronic 2021-03-08, pub-print 2021-06Article version: VoRPublication status: PublishedFunder: Natural Environment Research Council; Id: http://dx.doi.org/10.13039/501100000270Abstract: Upscaling Carbon Capture and Storage requires identification of suitable storage sites, with robust reservoir seals. The Utsira Formation in the northern North Sea has been flagged as a target for further storage. However, there are no regional studies of seal variability addressing heterogeneities that could facilitate seal bypass. This study aims to: (a) identify, assess and map the elements that promote or restrict fluid migration, (b) develop a matrix to regionally map containment confidence (CC) and (c) rank the different areas for CO2 containment across the Utsira Formation. The seal and overburden were mapped using a highâresolution, preâstack depthâmigrated 3D broadband seismic reflection dataset and 141 exploration wells. Seal geometry, sandstone presence and sandstone connectivity in the seal and overburden were assigned relative CC scores, which were summed to map overall CC of the Utsira Fm. Indicators for shallow gas and migration were mapped and correlated with the other elements. Areas with the lowest CC are in the west of the Utsira Fm. Here, sandstones within the Seal Interval are connected through the overburden via sandy submarine fans. In the southeast, dipping stratigraphy downlaps onto the Utsira Fm., increasing the potential for connection with glaciallyâderived channelâlobe systems in the overburden. The areas with the highest CC are the central and northeast parts of the Utsira Fm., where the Seal Interval is mudstoneâdominated and parallel to the reservoir, and channelâlobe systems identified in the Overburden Interval are disconnected from the reservoir. This area coincides with a thick depocentre of the northern Utsira Fm. These results can be used to inform CO2 storage site selection and constrain future CO2 plume simulation analyses for the Utsira Fm. The CC matrix outlined here can also be adapted and applied to regionally assess the containment of other potential CO2 storage reservoirs in any setting
Extensive marine-terminating ice sheets in Europe from 2.5 million years ago
Geometries of Early Pleistocene [2.58 to 0.78 million years (Ma) ago] ice sheets in northwest Europe are poorly constrained but are required to improve our understanding of past ocean-atmosphere-cryosphere coupling. Ice sheets are believed to have changed in their response to orbital forcing, becoming, from about 1.2 Ma ago, volumetrically larger and longer-lived. We present a multiproxy data set for the North Sea, extending to over a kilometer below the present-day seafloor, which demonstrates spatially extensive glaciation of the basin from the earliest Pleistocene. Ice sheets repeatedly entered the North Sea, south of 60°N, in water depths of up to ~250 m from 2.53 Ma ago and subsequently grounded in the center of the basin, in deeper water, from 1.87 Ma ago. Despite lower global ice volumes, these ice sheets were near comparable in spatial extent to those of the Middle and Late Pleistocene but possibly thinner and moving over slippery (low basal resistance) beds
Long term geological record of a global deep subsurface microbial habitat in sand injection complexes
Peer reviewedPublisher PD
Effects of exercise intensity and nutrition advice on myocardial function in obese children and adolescents: a multicentre randomised controlled trial study protocol.
INTRODUCTION: The prevalence of paediatric obesity is increasing, and with it, lifestyle-related diseases in children and adolescents. High-intensity interval training (HIIT) has recently been explored as an alternate to traditional moderate-intensity continuous training (MICT) in adults with chronic disease and has been shown to induce a rapid reversal of subclinical disease markers in obese children and adolescents. The primary aim of this study is to compare the effects of HIIT with MICT on myocardial function in obese children and adolescents. METHODS AND ANALYSIS: Multicentre randomised controlled trial of 100 obese children and adolescents in the cities of Trondheim (Norway) and Brisbane (Australia). The trial will examine the efficacy of HIIT to improve cardiometabolic outcomes in obese children and adolescents. Participants will be randomised to (1) HIIT and nutrition advice, (2) MICT and nutrition advice or (3) nutrition advice. Participants will partake in supervised exercise training and/or nutrition sessions for 3â
months. Measurements for study end points will occur at baseline, 3â
months (postintervention) and 12â
months (follow-up). The primary end point is myocardial function (peak systolic tissue velocity). Secondary end points include vascular function (flow-mediated dilation assessment), quantity of visceral and subcutaneous adipose tissue, myocardial structure and function, body composition, cardiorespiratory fitness, autonomic function, blood biochemistry, physical activity and nutrition. Lean, healthy children and adolescents will complete measurements for all study end points at one time point for comparative cross-sectional analyses. ETHICS AND DISSEMINATION: This randomised controlled trial will generate substantial information regarding the effects of exercise intensity on paediatric obesity, specifically the cardiometabolic health of this at-risk population. It is expected that communication of results will allow for the development of more effective evidence-based exercise prescription guidelines in this population while investigating the benefits of HIIT on subclinical markers of disease. TRIAL REGISTRATION NUMBER: NCT01991106
- âŠ