50 research outputs found

    X-ray Nanodiffraction on a Single SiGe Quantum Dot inside a Functioning Field-Effect Transistor

    Get PDF
    For advanced electronic, optoelectronic, or mechanical nanoscale devices a detailed understanding of their structural properties and in particular the strain state within their active region is of utmost importance. We demonstrate that X-ray nanodiffraction represents an excellent tool to investigate the internal structure of such devices in a nondestructive way by using a focused synchotron X-ray beam with a diameter of 400 nm. We show results on the strain fields in and around a single SiGe island, which serves as stressor for the Si-channel in a fully functioning Si-metal-oxide semiconductor field-effect transistor

    Scanning X-ray nanodiffraction: from the experimental approach towards spatially resolved scattering simulations

    Get PDF
    An enhancement on the method of X-ray diffraction simulations for applications using nanofocused hard X-ray beams is presented. We combine finite element method, kinematical scattering calculations, and a spot profile of the X-ray beam to simulate the diffraction of definite parts of semiconductor nanostructures. The spot profile could be acquired experimentally by X-ray ptychography. Simulation results are discussed and compared with corresponding X-ray nanodiffraction experiments on single SiGe dots and dot molecules

    Mapping Morphological and Structural Properties of Lead Halide Perovskites by Scanning Nanofocus XRD

    Get PDF
    Scanning nanofocus X-ray diffraction (nXRD) performed at a synchrotron is used to simultaneously probe the morphology and the structural properties of spin-coated CH3_3NH3_3PbI3_3 (MAPI) perovskite films for photovoltaic devices. MAPI films are spin-coated on a Si/SiO2_2/poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) substrate held at different temperatures during the deposition in order to tune the perovskite film coverage. The films are then investigated using nXRD and scanning electron microscopy (SEM). The advantages of nXRD over SEM and other techniques are discussed. A method to visualize, selectively isolate, and structurally characterize single perovskite grains buried within a complex, polycrystalline film is developed. The results of nXRD measurements are correlated with solar cell device measurements, and it is shown that spin-coating the perovskite precursor solution at elevated temperatures leads to improved surface coverage and enhanced solar cell performance.This work was funded by the UK Engineering and Physical Sciences Research Council via grants EP/M025020/1 “High resolution mapping of performance and degradation mechanisms in printable photovoltaic devices,” EP/J017361/1 (Supersolar Solar Energy Hub) and the E-Futures Doctoral Training Center in Interdisciplinary Energy Research EP/G037477/1. This work was partially funded by the President of the UAE’s Distinguished Student Scholarship Program (DSS), granted by the Ministry of Presidential Affairs, UAE (M.A. PhD scholarship). This work was also partially funded by the Masdar Institute through the grant Novel Organic Optoelectronic Devices. The authors gratefully acknowledge Manfred Burghammer and Martin Rosenthal at the ID13 – the microfocus beamline at the ESRF for their assistance with the nXRD measurements. XMaS is a mid-range facility supported by the Engineering and Physical Sciences Research Council (EPSRC)
    corecore