663 research outputs found

    Hypermutation of Immunoglobulin Genes in Memory B Cells of DNA Repair–deficient Mice

    Get PDF
    To investigate the possible involvement of DNA repair in the process of somatic hypermutation of rearranged immunoglobulin variable (V) region genes, we have analyzed the occurrence, frequency, distribution, and pattern of mutations in rearranged Vλ1 light chain genes from naive and memory B cells in DNA repair–deficient mutant mouse strains. Hypermutation was found unaffected in mice carrying mutations in either of the following DNA repair genes: xeroderma pigmentosum complementation group (XP)A and XPD, Cockayne syndrome complementation group B (CSB), mutS homologue 2 (MSH2), radiation sensitivity 54 (RAD54), poly (ADP-ribose) polymerase (PARP), and 3-alkyladenine DNA-glycosylase (AAG). These results indicate that both subpathways of nucleotide excision repair, global genome repair, and transcription-coupled repair are not required for somatic hypermutation. This appears also to be true for mismatch repair, RAD54-dependent double-strand–break repair, and AAG-mediated base excision repair

    Motorized spiral enteroscopy: results of an international multicenter prospective observational clinical study in patients with normal and altered gastrointestinal anatomy

    Full text link
    BACKGROUND : Motorized spiral enteroscopy (MSE) has been shown to be safe and effective for deep enteroscopy in studies performed at expert centers with limited numbers of patients without previous abdominal surgery. This study aimed to investigate the safety, efficacy, and learning curve associated with MSE in a real-life scenario, with the inclusion of patients after abdominal surgery and with altered anatomy. METHODS : Patients with indications for deep enteroscopy were enrolled in a prospective observational multicenter study. The primary objective was the serious adverse event (SAE) rate; secondary objectives were the diagnostic and therapeutic yield, procedural success, time, and insertion depth. Data analysis was subdivided into training and core (post-training) study phases at centers with different levels of MSE experience. RESULTS : 298 patients (120 women; median age 68, range 19-92) were enrolled. In the post-training phase, 21.5 % (n = 54) had previous abdominal surgery, 10.0 % (n = 25) had surgically altered anatomy. Overall, SAEs occurred in 2.3 % (7/298; 95 %CI 0.9 %-4.8 %). The SAE rate was 2.0 % (5/251) in the core group and 4.3 % (2/47) in the training group, and was not increased after abdominal surgery (1.9 %). Total enteroscopy was achieved in half of the patients (n = 42) undergoing planned total enteroscopy. In 295/337 procedures (87.5 %), the anatomical region of interest could be reached. CONCLUSIONS : This prospective multicenter study showed that MSE was feasible and safe in a large cohort of patients in a real-life setting, after a short learning curve. MSE was shown to be feasible in postsurgical patients, including those with altered anatomy, without an increase in the SAE rate. Trial registration: ClinicalTrials.gov NCT03955081

    Controllable orbital angular momentum monopoles in chiral topological semimetals

    Full text link
    The emerging field of orbitronics aims at generating and controlling currents of electronic orbital angular momentum (OAM) for information processing. Structurally chiral topological crystals could be particularly suitable orbitronic materials because they have been predicted to host topological band degeneracies in reciprocal space that are monopoles of OAM. Around such a monopole, the OAM is locked isotopically parallel or antiparallel to the direction of the electron's momentum, which could be used to generate large and controllable OAM currents. However, OAM monopoles have not yet been directly observed in chiral crystals, and no handle to control their polarity has been discovered. Here, we use circular dichroism in angle-resolved photoelectron spectroscopy (CD-ARPES) to image OAM monopoles in the chiral topological semimetals PtGa and PdGa. Moreover, we also demonstrate that the polarity of the monopole can be controlled via the structural handedness of the host crystal by imaging OAM monopoles and anti-monopoles in the two enantiomers of PdGa, respectively. For most photon energies used in our study, we observe a sign change in the CD-ARPES spectrum when comparing positive and negative momenta along the light direction near the topological degeneracy. This is consistent with the conventional view that CD-ARPES measures the projection of the OAM monopole along the photon momentum. For some photon energies, however, this sign change disappears, which can be understood from our numerical simulations as the interference of polar atomic OAM contributions, consistent with the presence of OAM monopoles. Our results highlight the potential of chiral crystals for orbitronic device applications, and our methodology could enable the discovery of even more complicated nodal OAM textures that could be exploited for orbitronics.Comment: 16 pages, 8 figure

    Thermoelectric properties of lead chalcogenide core-shell nanostructures

    Full text link
    We present the full thermoelectric characterization of nanostructured bulk PbTe and PbTe-PbSe samples fabricated from colloidal core-shell nanoparticles followed by spark plasma sintering. An unusually large thermopower is found in both materials, and the possibility of energy filtering as opposed to grain boundary scattering as an explanation is discussed. A decreased Debye temperature and an increased molar specific heat are in accordance with recent predictions for nanostructured materials. On the basis of these results we propose suitable core-shell material combinations for future thermoelectric materials of large electric conductivities in combination with an increased thermopower by energy filtering.Comment: 12 pages, 8 figure

    Status Of The FAIR Synchrotron Projects SIS18 And SIS100

    Get PDF
    A large fraction of the program to upgrade the existingheavy ion synchrotron SIS18 as injector for the FAIR synchrotron SIS100 has been successfully completed. With the achieved technical status, a major increase of theaccelerated number of heavy ions could be reached. Thenow available performance especially demonstrates thefeasibility of high intensity beams of medium charge stateheavy ions with a sufficient control of the dynamicvacuum and connected charge exchange loss. Two furtherupgrade measures, the installation of additional magneticalloy (MA) acceleration cavities and the exchange of themain dipole power converter, are presently beingimplemented. For the FAIR synchrotron SIS100, theprocurement of all major components with longproduction times has been started. With the delivery andtesting of several pre-series components, the phase ofoutstanding technical reserach and developments could becompleted and the readiness for series productionachieved

    Genetic and Microbial Associations to Plasma and Fecal Bile Acids in Obesity Relate to Plasma Lipids and Liver Fat Content

    Get PDF
    Bile acids (BAs) have been implicated in obesity-related conditions such as NAFLD and hyperlipidemia. Different human BAs exert variable biological activities. Chen et al. define genetic and microbial associations to plasma and fecal BA concentrations and composition in persons with obesity and establish their relationships with liver fat and lipid phenotypes

    Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity

    Get PDF
    Induction of trained immunity (innate immune memory) is mediated by activation of immune and metabolic pathways that result in epigenetic rewiring of cellular functional programs. Through network-level integration of transcriptomics and metabolomics data, we identify glycolysis, glutaminolysis, and the cholesterol synthesis pathway as indispensable for the induction of trained immunity by β-glucan in monocytes. Accumulation of fumarate, due to glutamine replenishment of the TCA cycle, integrates immune and metabolic circuits to induce monocyte epigenetic reprogramming by inhibiting KDM5 histone demethylases. Furthermore, fumarate itself induced an epigenetic program similar to β-glucan-induced trained immunity. In line with this, inhibition of glutaminolysis and cholesterol synthesis in mice reduced the induction of trained immunity by β-glucan. Identification of the metabolic pathways leading to induction of trained immunity contributes to our understanding of innate immune memory and opens new therapeutic avenues

    Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers

    Get PDF
    Glacier surface mass-balance measurements on Greenland started more than a century ago, but no compilation exists of the observations from the ablation area of the ice sheet and local glaciers. Such data could be used in the evaluation of modelled surface mass balance, or to document changes in glacier melt independently from model output. Here, we present a comprehensive database of Greenland glacier surface mass-balance observations from the ablation area of the ice sheet and local glaciers. The database spans the 123 a from 1892 to 2015, contains a total of similar to 3000 measurements from 46 sites, and is openly accessible through the PROMICE web portal (http://www.promice.dk). For each measurement we provide X, Y and Z coordinates, starting and ending dates as well as quality flags. We give sources for each entry and for all metadata. Two thirds of the data were collected from grey literature and unpublished archive documents. Roughly 60% of the measurements were performed by the Geological Survey of Denmark and Greenland (GEUS, previously GGU). The data cover all regions of Greenland except for the southernmost part of the east coast, but also emphasize the importance of long-term time series of which there are only two exceeding 20 a. We use the data to analyse uncertainties in point measurements of surface mass balance, as well as to estimate surface mass-balance profiles for most regions of Greenland

    Effect of additional treatment with EXenatide in patients with an Acute Myocardial Infarction (EXAMI): study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Myocardial infarction causes irreversible loss of cardiomyocytes and may lead to loss of ventricular function, morbidity and mortality. Infarct size is a major prognostic factor and reduction of infarct size has therefore been an important objective of strategies to improve outcomes. In experimental studies, glucagon-like peptide 1 and exenatide, a long acting glucagon-like peptide 1 receptor agonist, a novel drug introduced for the treatment of type 2 diabetes, reduced infarct size after myocardial infarction by activating pro-survival pathways and by increasing metabolic efficiency.</p> <p>Methods</p> <p>The EXAMI trial is a multi-center, prospective, randomized, placebo controlled trial, designed to evaluate clinical outcome of exenatide infusion on top of standard treatment, in patients with an acute myocardial infarction, successfully treated with primary percutaneous coronary intervention. A total of 108 patients will be randomized to exenatide (5 μg bolus in 30 minutes followed by continuous infusion of 20 μg/24 h for 72 h) or placebo treatment. The primary end point of the study is myocardial infarct size (measured using magnetic resonance imaging with delayed enhancement at 4 months) as a percentage of the area at risk (measured using T2 weighted images at 3-7 days).</p> <p>Discussion</p> <p>If the current study demonstrates cardioprotective effects, exenatide may constitute a novel therapeutic option to reduce infarct size and preserve cardiac function in adjunction to reperfusion therapy in patients with acute myocardial infarction.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01254123">NCT01254123</a></p
    corecore