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SUMMARY
Bile acids (BAs) are implicated in the etiology of obesity-related conditions such as non-alcoholic fatty liver
disease. Differently structured BA species display variable signaling activities via farnesoid X receptor (FXR)
and Takeda G protein-coupled BA receptor 1 (TGR5). This study profiles plasma and fecal BAs and plasma
7a-hydroxy-4-cholesten-3-one (C4) in 297 persons with obesity, identifies underlying genetic and microbial
determinants, and establishes BA correlations with liver fat and plasma lipid parameters. We identify 27 ge-
netic associations (p < 5 3 10�8) and 439 microbial correlations (FDR < 0.05) for 50 BA entities. Additionally,
we report 111 correlations between BA and 88 lipid parameters (FDR < 0.05), mainly for C4 reflecting hepatic
BA synthesis. Inter-individual variability in the plasma BA profile does not reflect hepatic BA synthetic path-
ways, but rather transport and metabolism within the enterohepatic circulation. Our study reveals genetic
and microbial determinants of BAs in obesity and their relationship to disease-relevant lipid parameters
that are important for the design of personalized therapies targeting BA-signaling pathways.
INTRODUCTION

Obesity is becoming increasinglyprevalent across theglobeand is

associated with the development of insulin resistance, hyperten-

sion, hyperlipidemia, and non-alcoholic fatty liver disease

(NAFLD), conditions collectively referred to as metabolic syn-

drome. Bile acids (BAs) and the BA-signaling pathways that act

via the nuclear farnesoidX receptor (FXR) or themembrane-bound

TakedaGprotein-coupledBA receptor 1 (TGR5) havebeen recog-

nized as actors in the etiologies of several components of meta-

bolic syndrome (de Boer et al., 2018). Importantly, FXR and

TGR5, as well as other receptors such as vitamin D receptor

(VDR) that can beactivatedby specificBA-species, are expressed

not only in liver and intestine, but also in adipose tissues, adrenal
This is an open access article und
glands, immune cells, and endothelial cells that are exposed to

systemic BA concentrations (Chávez-Talavera et al., 2019). New

therapies are emerging that target BA-signaling pathways via

FXR and TGR5, particularly for NAFLD and its progressive form,

non-alcoholic steatohepatitis (NASH) (de Boer et al., 2018).

Furthermore, plasma concentrations of individual BAs have been

proposed as biomarkers: for instance, to reflect the progression

ofNAFLDtoNASHor theprogressionofpre-diabetes to type2dia-

betes (Chávez-Talavera et al., 2019; de Boer et al., 2018). These

developments are, to a large extent, based on studies in pre-clin-

ical models and on human studies in relatively small numbers of

subjects (fewer than 100) (Chávez-Talavera et al., 2019).

Human BA metabolism is complex and, importantly, differs

fundamentally from BA metabolism in mice and rats, the most
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widely used pre-clinical models (de Boer et al., 2018). BA con-

centrations in the various limbs of the enterohepatic circulation

(gallbladder, intestinal lumen, plasma, and stool) reflect the ac-

tions of several physiological determinants, and the human BA

pool is known to display considerable inter-individual variation

in both size and composition (Steiner et al., 2011). This pool con-

sists of a mixture of primary BAs synthesized in the liver (cholic

acid [CA] and chenodeoxycholic acid [CDCA]) and secondary

BAs generated from CA and CDCA by intestinal microbiota (de-

oxycholic acid [DCA], lithocholic acid [LCA], and ursodeoxy-

cholic acid [UDCA]), as well as a number of quantitatively minor

components, such as sulfated LCA and C6-hydroxylated BAs

(Molinaro et al., 2018). In steady state, hepatic synthesis of pri-

mary BAs equals fecal BA loss in order to maintain BA pool

size. The contributions of the CA and CDCA synthesis pathways

can thus be deduced from fecal BA composition.

Importantly, the different BA species present in the circulating

BA pool show widely varying capacities to activate FXR, TGR5,

and VDR and therefore to modulate metabolism and immune

functions. Thus, it is important to have insight into the determi-

nants of BA pool composition and its reflection in the systemic

circulation in obese subjects if we wish to understand the

contribution of endogenous BAs to obesity-related disease

development, rationalize their potential use as biomarkers, and

personalize future therapeutic applications of FXR and TGR5

modulators.

Since BAs are involved in the cross-talk between host ge-

netics and gut microbiome (Fu and Kuipers, 2019), differences

in genetics and gut microbiome among people with obesity will

contribute to the inter-individual variations in BA concentration

and composition. Yet, it is not known how genetics and gut mi-

crobiome interact in the control of BA metabolism in human

obesity, how these actions translate into differences in plasma

and fecal BA levels and composition, and whether these differ-

ences are actually associated with components of the metabolic

syndrome in obesity.

In this study, we classified potential genetic and microbial de-

terminants of 54 BA-related entities assessed in fasting plasma

and stool samples from a relatively large cohort of 297 over-

weight persons with obesity-related diseases, including dia-

betes (12%), hypertension (60%), dyslipidemia (94%), and high

liver fat content (18%with liver fat proportion >20%). This cohort

thus represents the population with high metabolic syndrome

risk that will likely benefit from BA-based therapies in the future.

To gain insight into the potential metabolic consequences of var-

iations in BA metabolism in these people with obesity, we also

analyzed the correlations between individual BAs and metaboli-

cally defined groups of BAs and obesity-related disease pheno-

types, including the levels of relevant plasma metabolites.

RESULTS

Profiles of PlasmaBAEntities ShowLarge Variability but
Modest Consistency with Stool
We assessed the concentrations of individual BA species in fast-

ing plasma and stool samples collected from 297 and 276 partic-

ipants of the 300-OB cohort, respectively. Plasma C4 levels and

fecal concentrations of cholesterol, dihydro-cholesterol, and
2 Cell Reports 33, 108212, October 6, 2020
coprostanol were also quantified. This collectively led to the defi-

nition of 58 BA-related entities (Table S1). In this study, we

confined the analysis to the 54 BA entities that could be deter-

mined in >10% of the individuals (Table S1). Plasma and stool

BA concentration and composition showed remarkably large in-

ter-individual variations in this cohort (Figures 1A and 1B). Total

plasma BA concentration ranged from 0.08 to 13.56 mM (Fig-

ure 1A), a variability similar to that observed in healthy subjects

(Steiner et al., 2011), while fecal BA concentrations ranged

from 0.72 to 69.08 mmol/g (dry weight). A total of 14 BA entities

showed significant differences (false discovery rate [FDR] <

0.05) between males and females (e.g., the ratio of taurine-to-

glycine conjugated BA in plasma), but no significant correlations

were found with age (Table S1), likely related to the relatively

small age range (54 to 81 years) of this cohort.

Hepatic BA synthesis in humans yields either CDCA or CA.

Notably, we found that some subjects showed a strong prepon-

derance of CDCA and its metabolites in plasma, while in other

subjects, the majority of plasma BAs were derived from the CA

pathway (Figure 1B). The plasma CA/CDCA ratio, also referred

to as the 12a-OH/12a-non-OH BA ratio (Haeusler et al., 2013)

and calculated as all (CA+DCA)/all (CDCA+LCA+UDCA), ranged

from 0.13 to 6.82 (mean value 1.45). Surprisingly, subject-spe-

cific plasma CA/CDCA ratios were only very modestly related

to the CA/CDCA ratios determined in feces (r = 0.22, p = 9.4 3

10�5; Figure 1C). The fecal CA/CDCA ratio, which reflects the ra-

tio in which both primary BAs are produced by the liver, was 0.96

on average (range 0.15–3.22). However, and surprisingly, the

fecal CA/CDCA ratio did not mimic the distinct gradient

observed for plasma BA across the cohort (Figure 1B).

Correlation analyses between plasma and stool BAs revealed

several distinct clusters (Figure 1C). Plasma C4 levels, which

ranged from 3.92 to 835.12 mM (Figure S1), positively correlated

with total fecal BA concentrations (Figure 1D) and showed a

modest positive correlation with the fecal CA/CDCA ratio (r =

0.27, p = 3.33 10�6; Figure 1C), suggesting a larger contribution

of the CA pathway in subjects with higher total BA synthesis. In

general, secondary BA entities in stool correlated positively

with secondary BA entities in plasma but negatively with primary

BA entities in plasma (Figure 1C). Consequently, the ratio be-

tween secondary and primary BAs in plasma and stool was

associated (Figure 1E), indicating that not all primary BAs are

metabolized by bacteria in the human colon. Fecal neutral sterols

(i.e., cholesterol and its major bacterial metabolite coprostanol)

correlated positively with total and individual BAs in feces (Fig-

ure S2). Taken together, the large inter-individual variations in

BA profiles in different limbs of the enterohepatic circulation

demonstrate the importance of establishing the determinants

of human plasma BA profiles if we want to design effective

personalized therapies based on BA-signaling pathways for

treatment of obesity-related diseases.

Genetic Determinants of BA Entities
By performing quantitative trait locus (QTL) mapping for 54 BA

entities, after controlling for confounding factors (age, sex,

BMI, diseases, medications, and microbiome), we identified 27

independent genetics-BA associations (baQTLs) for 23 BA en-

tities (14 plasma, 9 fecal) at a genome-wide significance level
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Figure 1. Profiles of Fasting Plasma and Stool BA Entities Showed Large Inter-individual Variability and Modest Consistency in the 300-OB

Cohort

(A) Concentrations of fasting plasma (n = 297) and stool (n = 276) BAs in individual subjects.

(B) Proportions of fasting plasma (n = 297) and stool (n = 276) BAs in individual subjects. Each bar represents a single individual, and the order for upper and lower

panels is the same. Colors represent different BAs. White bars represent missing stool samples. UDCA and hyodeoxycholic acid were detectable in small

quantities in the feces of 21% and 1.5% of the subjects, respectively, and these two BAs are not included in the figure.

(C) Spearman correlations between plasma and stool BA entities (n = 276). Stars represent significant correlations at FDR < 0.05. Dots represent significant

correlations at p < 0.05.

(D) Spearman correlation between plasma C4 and total BAs in stool (n = 276).

(E) Spearman correlation between secondary/primary BA ratios in plasma (n = 297) and stool (n = 276).
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of p < 5 3 10�8 (Figure 2A; Table S2). Notably, an intron variant

(rs2121703) of transporter gene Solute Carrier Family 35 Mem-

ber C1 (SLC35C1), which encodes a cytidine diphosphate

(CDP)-fucose transporter that regulates Wingless/Int-1 (Wnt)

signaling (Deng et al., 2020), associated with plasma concentra-

tions of DCA (Figure 2B). Another intergenic variant (rs1968543)

of transporter gene Solute Carrier Family 39 Member A8
(SLC39A8, intergenic variant), which is involved in zinc and man-

ganese transport (Park et al., 2018), associated with plasma con-

centrations of TDCA (Figure 2C). In addition, four zinc-finger-pro-

tein-related genetic variants (ZFN569, ZFN250, ZFN706, and

JAZF1) were found to associate with five BA entities, particularly

fecal BA and cholesterol content (Figure 2A; Table S2). For

example, the JAZF1-related intron variant, rs10255700, was
Cell Reports 33, 108212, October 6, 2020 3



Figure 2. Genetic Determinants of BA Entities

(A) Manhattan plot showing the 27 independent (LD r2 < 0.05, 500 kb) genetic-BA-entity associations at genome-wide significant level (p < 53 10�8). LD blocks

(100 kb) are highlighted in red or blue. The representative gene of each top independent SNP is given in the plot. Names of genes and their proposed functions are

given in Table S3.

(B) The SLC35C1 intron variant rs2121703 associates with plasma DCA (n = 297). Boxplots show medians and the first and third quartiles (the 25th and 75th

percentiles) of plasma DCA concentration. The upper and lower whiskers extend the largest and smallest value no further than 1.5 3 IQR, respectively. Outliers

are plotted individually.

(C) The SLC39A8 intergenic variant rs1968543 associates with plasma TDCA (n = 297). Boxplots showmedians and the first and third quartiles (the 25th and 75th

percentiles) of plasma TDCA concentration. The upper and lower whiskers extend the largest and smallest value no further than 1.5 3 IQR, respectively. Outliers

are plotted individually.
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found to associate with stool cholesterol levels (Table S2). More-

over, we observed that an intergenic variant (rs55638783) of the

gene encoding the human inward rectifier potassium channel

Kir2.1 (KCNJ2), a lipid-gated ion channel linked to ventricular

arrhythmia (Kimura et al., 2012), was associated with the con-

centration and proportion of plasma TDCA (Figure 2A; Table

S2). Apart from these genetic determinants, we also checked ge-

netic variants at the loci of 63 confirmed BA genes encoding en-

zymes, transporters, and transcription factors (Supplemental In-

formation) and found 30 independent associations at p < 1 3

10�5 that related to 14 of these genes (Table S2). For instance,

two independent intron variants, rs7395581 and rs10838681,

related to LXRa (NR1H3), were associated with plasma DCA

and total secondary BAs, respectively. Intergenic variant

rs9586012, related to SLC10A2—which encodes the ileal apical

sodium-dependent BA transporter (ASBT)—was associated

with total primary BA and CDCA in stool (Table S2). Observed

genetic determinants of BA entities highlight the importance of

taking genetic background difference into account for devel-

oping personalized BA therapies in obesity.

Microbial Determinants of BA Entities
We next set out to identify microbial factors correlated to BA en-

tities and found a total of 439 BA-microbial correlations for 45 BA

entities at FDR < 0.05 (Figure 3A; Table S3). In particular, 44 BA

entities correlated with 61 bacterial species (201 correlations in

total; Table S3), and 30 BA entities correlated with 112 bacterial

pathways (238 associations in total; Figure S3; Table S3). Both

genetic associations and microbial correlations were detected
4 Cell Reports 33, 108212, October 6, 2020
for 16 BA entities. We therefore investigated the association be-

tween BA loci and the gut microbiome (Table S4) and observed

that genetics andmicrobiome likely play additive roles in shaping

BA entities.

We found several microbial species that clustered together

and showed strong positive correlations with secondary BA en-

tities and negative correlations with primary BA entities. These

included well-known microbial species able to mediate conver-

sion of primary BAs into secondary BAs (e.g., Eubacterium hallii

[Udayappan et al., 2016], Ruminococcus torques [Tonin and

Arends, 2018], and Dorea formicigenerans [Liu et al., 2018]; Fig-

ure 3A). Additionally, many microbial correlations to BA entities

became evident in this analysis. The recently identified liver-

fat-content-related species Ruminococcus sp_5_1_39BFAA

(Kurilshikov et al., 2019), for example, was positively correlated

with the proportion of GDCA and the secondary/primary BA ratio

in plasma (Figure 3A). We further annotated the genome of this

species and identified a 3D structure of the amino acid

sequence, which is encoded by a gene (g000664, from 63705

to 64702 bp) that shows high homology (global mmmmodel

quality estimation, GMQE = 0.79) with choloylglycine hydrolase

(Figure 3B), the microbial enzyme responsible for BA deconjuga-

tion. Moreover, we found the abundance of the anti-NAFLD spe-

cies Faecalibacterium prausnitzii (Munukka et al., 2017) to be

negatively correlated with multiple BA entities, particularly with

stool levels of iso-LCA (Figures 3A and 3C). Intriguingly, the

CDP-diacylglycerol biosynthesis pathway that is involved in

membrane formation in this species was negatively associated

with stool iso-LCA concentration (Figure 3D), suggesting that
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Figure 3. Microbial Determinants of BA Entities

(A) The 201 microbial species-BA correlations at FDR < 0.05 that involve 61 microbial species and 44 BA entities.

(B) The Ruminococcus sp_5_1_39BFAA genome contains a potential BA deconjugation gene (g000664, from 63705 to 64702 bp). The 3D structure of the protein

encoded by this gene shows high homology (GMQE = 0.79) with the BA deconjugation enzyme choloylglycine hydrolase.

(C) The abundance of Faecalibacterium prausnitzii is highly correlated with the abundance of the membrane formation pathway (CDP-diacylglycerol biosynthesis

pathway) of this species (Spearman correlation, n = 297). CDP-diacylglycerol biosynthesis pathway abundance was generated from metagenomic sequencing

data using HUMAnN2 pipeline.

(D) The F. prausnitzii CDP-diacylglycerol biosynthesis pathway negatively correlated with stool iso-LCA concentration (Spearman correlation, n = 276).
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iso-LCA may interfere with F. prausnitzii abundance by modu-

lating membrane formation. These results suggest that altering

gut microbiome might be a strategy to modulate BA metabolism

for treating obesity-related diseases.

BA Entities Linked to Obesity-Related Diseases and
Medications
Since BAs have been reported to be involved in the etiology of

obesity-related diseases (de Boer et al., 2018), we checked

whether BA entities were related to liver fat content; the presence

of obesity-related diseases such as diabetes, hypertension, and

dyslipidemia; or the use of their corresponding medications (anti-

diabetic, antihypertensive, and lipid-lowering medications), after

adjusting for age and sex. In total, we observed 18BA correlations

with diseases and 15 tomedications at FDR < 0.05 (Figure 4A; Ta-

ble S5). The majority of these originated from relationships be-

tween ‘‘bacterial BA entities’’ (total secondary BA, DCA, GDCA,

and TDCA), including correlations between total secondary BAs

and liver fat content (Figure 4B) and a higher ratio of secondary

versus primary BAs in subjects using antidiabeticmedication (Fig-

ure 4C). Unexpectedly, we found that the proportions of plasma

CA and stool LCA showed opposing relationships with diseases
and medications when compared with other BA entities (Fig-

ure 4A). Moreover, we checked for relationships between plasma

and fecal 12a-OH/12a-non-OH BA ratios and diabetes as well as

liver fat content. We could confirm previous findings (Haeusler

et al., 2013) that both plasma and fecal 12a-OH/12a-non-OH

BAratio positively correlatewith thepresenceofdiabetes (rplasma=

0.12, Pplasma = 0.043; rstool = 0.17, Pstool = 0.005), while their cor-

relations with liver fat content were not statistically significant (p

> 0.05).

Linkage of Disease-Relevant Plasma Metabolites to BA
Entities
BAs and BA-signaling pathways have been shown to be involved

in the control of plasma lipid and lipoprotein levels (de Boer et al.,

2018). Therefore, after adjusting for age and sex, we checked the

correlations between the 54 BA entities and 225 metabolites

measured by the Nightingale nuclear magnetic resonance

(NMR) platform, including total plasma lipid concentrations and

the relative compositions of 14 lipoprotein subclasses, lipopro-

tein particle sizes, apolipoproteins, amino acids, and cholesterol.

In total, we observed 111 BA correlations with 88 plasmametab-

olites at FDR < 0.05 (Table S5). Intriguingly, correlations between
Cell Reports 33, 108212, October 6, 2020 5
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Figure 4. BA Entities Associate with Diseases, Medications, and Plasma Metabolites

(A) The 18 disease-BA, 15 medication-BA, and 111 metabolite-BA correlations identified at FDR < 0.05. Stars represent significant correlations at FDR < 0.05.

Dots represent significant correlations at p < 0.05.

(B) Plasma total secondary BAs correlated with liver fat content (Spearman correlation, n = 267).

(C) Difference in the plasma secondary/primary BAs ratio between antidiabetic medication users (red) and non-users (blue) (Wilcoxon test, n = 297).

(D) Plasma C4 concentration correlates with plasma total triglyceride concentration (Spearman correlation, n = 297).

(E) Plasma C4 concentration correlates with mean diameter of LDL particles (Spearman correlation, n = 297).
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BA entities and plasma metabolites formed four distinct clusters

(Figure 4A). The majority of the strong correlations were related

to triglyceride-containing very low-density lipoproteins (VLDLs),

and 48 of these showed positive correlations with plasma C4

levels (Figure 4A; Table S5), indicating that hepatic BA synthesis

plays an important role in the regulation of plasma triglyceride

levels in obese subjects. This is illustrated in Figure 4D, which

shows the relationship between plasma C4 and total triglyceride

concentrations. In addition, we observed negative relationships

between plasma C4 and parameters of plasma cholesterol con-

tent (e.g., the median diameter of LDL particles, the free choles-

terol-total lipid ratio in large LDL particles, andmean diameter for

LDL particles; Figure 4E; Table S5). We did not observe any sig-

nificant correlations between the 12a-OH/12a-non-OH BA ratio

and plasma lipid parameters at FDR < 0.05. Taken together,

however, these results indicate a close link between BA and lipid

metabolism in obesity.

DISCUSSION

In this comprehensive multi-omics analysis of BA metabolism in

297 individuals, we found that the profiles of BA entities in fasting

plasma and stool samples showed remarkably large inter-indi-

vidual variations in the 300-OB cohort, which comprises over-

weight individuals aged 54 years or older (Kurilshikov et al.,

2019), a targeted population with high metabolic syndrome risk
6 Cell Reports 33, 108212, October 6, 2020
that may benefit from BA-based therapies in the future. Vari-

ability in plasma BA concentrations (Steiner et al., 2011) and

C4 levels (Gälman et al., 2011) has been reported as a feature

of human BA metabolism in healthy subjects, but the underlying

causes have remained unexplained. To our surprise, the large

intra-individual differences across people with obesity between

BAs derived from the CA and the CDCA pathway that we

observed in plasma were not mirrored in stool. Yet, we found

that plasma levels of C4, an established proxy of hepatic BA syn-

thesis (Gälman et al., 2005), were positively correlated with fecal

BA concentrations. The variable contribution of CA- versus

CDCA-derived BA species in feces across the cohort, ranging

from 0.15 to 3.22, can therefore be interpreted to reflect the con-

tributions of both synthesis pathways to the circulating BA pool

in the individual participants. Of note, the average CA/CDCA ra-

tio of 0.96 found in our study corresponds reasonably well to the

average ratios determined by the stable isotope dilution tech-

nique in obese subjects (1.13) (Brufau et al., 2010), lean subjects

on a standardized diet (1.50) (Bisschop et al., 2004), and healthy

subjects on their regular diet (1.14) (Koopman et al., 1988). How-

ever, there was only a very weak relationship between the CA/

CDCA ratios found in feces and those in plasma of individual par-

ticipants (Figure 1B). Consequently, the large variability in

plasma BA composition between subjects must be largely due

to inter-individual differences in metabolic and/or transport pro-

cesses that occur during enterohepatic cycling of BAs. So far,
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the nature and contributions of the potential processes involved

have remained unexplored, and due to the complexity of human

BA metabolism, their identification requires a systems-based

approach like that applied in this study.

Recently, Kemis et al. (2019) performed QTL analyses on the

fecal microbiome and plasma and fecal BA profiles of a diver-

sity-outbred mouse population, a heterogeneous population

derived from eight founder strains that individually harbor

distinct microbial communities. Their study revealed several

QTLs associated with variations in bacterial (16S sequencing)

and BA profiles, with 17 loci defined as shared QTLs associating

with both microbial and BA traits. However, human and murine

BA metabolisms differ fundamentally in several aspects,

including mouse-/rat-specific C6 hydroxylation reactions that

generate muricholic acids; hepatic rehydroxylation of secondary

BAs upon their return to the liver; and the murine habit of

coprophagy, which causes re-entry of bacteria and (secondary)

BA into the enterohepatic system (Fu and Kuipers, 2019). Our

data show that in humans with obesity, both genetics and the

gut microbiome relate to plasma and stool BA entities and likely

play additive roles in shaping these entities.

Genetic associations to BA entities found in the current study

revealed potential genetic determinants of human BAmetabolism

in obesity. For instance, among the 27 genetic-BA associations,

we identified two independent SNPs (rs2121703 and rs1968543)

related to the transporter genes SLC35C1 (intron variant) and

SLC39A8 (intergenic variant) that were associated with plasma

DCA and TDCA concentrations, respectively. These transporters

are proposed to be involved in transport of GDP-fucose (Deng

et al., 2020) and zinc/manganese (Park et al., 2018), respectively.

How these transporters might modulate plasma levels of second-

ary BAs is not known and requires functional follow-up. Interest-

ingly, Ahmad et al. (2020) recently reported that the non-12a hy-

droxylated secondary species LCA induces the expression of

the ileal manganese efflux transporter SLC30A10 via activation

of VDR, which supports the existence of a functional link between

BA and manganese metabolism. Additionally, we found four zinc-

finger-protein-related genetic variants (ZFN569, ZFN250,

ZFN706, and JAZF1) to associate with five fecal BA entities,

including fecal DCA and CDCA contents. Zinc finger proteins

have been recognized to have diverse functions (Laity et al.,

2001) and may potentially impact BA metabolism by regulating

cholesterol or lipid metabolism. We found the JAZF1-related

intron variant rs10255700 to associatewith stool cholesterol levels

(Table S2). Overexpression of JAZF1 in apoE-deficient mice has

been reported to decrease serum cholesterol levels and hepatic

cholesterol synthesis by inhibiting CREB-dependent HMGCR

promoter transcriptional activity (Li et al., 2014).We also observed

that an intergenic variant of the gene encoding the human inward

rectifier potassiumchannel Kir2.1 (KCNJ2), a lipid-gated ion chan-

nel linked to ventricular arrhythmia (Kimura et al., 2012), associ-

atedwith plasma TDCA concentration and proportion. These sec-

ondary BAs have been reported to impact cardiac mitochondria

energetics (Ferreira et al., 2005).

We also checked for genetic variants localized in or near (250

kb) 63 confirmed BA-metabolism-related genes at a lower strin-

gency (p < 1 3 10�5) and confirmed BA associations with rele-

vant transcription factors (e.g., LXRa, RXRa, VDR) with enzymes
involved in BA synthesis (CYP7B1, AKR1D1) and with hepatic

and intestinal transporters (ABCC1 and SLC10A2/ASBT). Inter-

estingly, the rs9586012 intergenic variant related to the ileal BA

transporter ASBT was associated with the fecal content of pri-

mary BAs, suggesting increased influx of primary BAs into the

colon and/or decreased microbial BA deconjugation/dehydrox-

ylation activity. In their mouse study, Kemis et al. (2019) identified

a QTL near Slc10a2/Asbt that was associated with both the

abundance of Turicibacter sp., which shows BA-deconjugating

activity, and the plasma concentration of unconjugated CA.

Microbial correlations to BA entities that we found not only

confirm previous microbial BA determinants (Liu et al., 2018; To-

nin and Arends, 2018; Udayappan et al., 2016), but also include

extra correlations, such as those with Ruminococcus

sp_5_1_39BFAA and Faecalibacterium prausnitzii, that may

reflect conversion of BAs by the bacterium or, conversely, mod-

ulation of the bacterium by the actions of (bacteriostatic) BAs. It

is important to note that we only focused on the most prominent

BA species. In the future, it would be interesting to also assess

the determinants of (much) less abundant secondary BA spe-

cies, such as the LCA metabolites 3-oxo-LCA and isoallo-LCA

that were recently shown to control T cell differentiation in the

colonic lamina propria and, hence, modulate adaptive immunity

(Hang et al., 2019).

We also examined to what extent BA entities correlated with

obesity-related diseases, including liver fat content, diabetes,

hypertension, and dyslipidemia (after controlling for age and

sex). This analysis identified seven BA correlations with dia-

betes, six BA associations with liver fat content, and five BA cor-

relations with hypertension at FDR < 0.05. The majority of these

actually related to bacteria-derived BA entities, particularly for

total secondary BA, DCA, GDCA, and TDCA. BA-liver-fat-con-

tent correlations support a role for BAs in the etiology of NAFLD

in these obese subjects. Preclinical studies have shown that BAs

can impact the development of NAFLD by modulating lipogen-

esis via activation of FXR (de Boer et al., 2018) and the

SREBP1c-pathway (Watanabe et al., 2004), as well as by sup-

pressing VLDL production (Lin et al., 1996), while elevated levels

of DCA have previously been related to NAFLD and NASH in hu-

mans (Jiao et al., 2018). Intriguingly, we observed that Rumino-

coccus sp_5_1_39BFAA—a species expressing the gene en-

coding choloylglycine hydrolase (Figure 3B), which catalyzes

BA deconjugation—correlated not only with bacterial BA en-

tities, but also with hepatic fat content (Kurilshikov et al., 2019).

These results support the hypothesis that Ruminococcus

sp_5_1_39BFAAmight contribute to NAFLD by co-regulating in-

testinal BA metabolism. Additionally, we observed the abun-

dance of F. prausnitzii, a butyrate producer shown to reduce he-

patic fat content in mice (Munukka et al., 2017), to be negatively

associated with stool iso-LCA concentration and liver fat con-

tent. The CDP-diacylglycerol biosynthesis pathway of this spe-

cies, which plays an important role in the formation of bacterial

membranes, was negatively associated with stool iso-LCA con-

centration, suggesting that iso-LCA may act as antimicrobial

agent that inhibits the growth of these anti-NAFLD bacteria.

Importantly, our study identified 111 links between BA entities

and disease-relevant plasma lipoprotein characteristics, which

supports an important role for BAs in the regulation of human
Cell Reports 33, 108212, October 6, 2020 7
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lipid metabolism. The positive correlation between plasma C4

and triglyceride levels is in agreement with the results of Gälman

et al. (2011) in a cohort of 435 healthy volunteers with an age

range from 20 to 89 years. In addition, Brufau et al. (2010)

showed that induction of hepatic BA synthesis, as quantified

by stable isotope dilution, was linearly related to plasma triglyc-

eride levels in obese subjects treated with the BA sequestrant

colesevelam. Conversely, certain forms of familial hypertrigly-

ceridemia were found to be characterized by high BA synthesis,

possibly due to inborn defects of intestinal BA reabsorption (An-

gelin et al., 1987), and treatment with CDCA, which suppresses

endogenous BA synthesis, has been shown to reduce plasma tri-

glycerides in hypertriglyceridemic subjects (Angelin et al., 1987).

Interestingly, we found fasting C4 to be positively correlated with

differently sized triglyceride-containing VLDLs, suggesting that

the relationship originates in the VLDL production process rather

than in the modulation of the VLDL de-lipidation cascade in

plasma. Increased production of VLDL by the liver has been

observed in obese subjects, likely related to hepatic insulin resis-

tance (Pramfalk et al., 2016), but BAs themselves have also been

shown to suppress the hepatic VLDL production process (Lin

et al., 1996). Interference with FXR-mediated modulation of de

novo lipogenesis in the liver may contribute to these effects (Sjö-

berg et al., 2017).

In conclusion, this systematic approach has revealed the con-

tributions of genetics and the microbiome to plasma and stool

BA entities in human obesity. The surprisingly large inter-individ-

ual variations observed in plasma BA entities highlight that both

genetic andmicrobial determinants should be taken into account

in designing studies to evaluate future treatment strategies that

target BA-signaling pathways. In particular, the broad correla-

tions of microbiome-derived secondary BA entities with hepatic

fat content, diabetes, and hypertension observed in these obese

subjects, in conjunction with very recent reports that link sec-

ondary BAs to intestinal immunity (Hang et al., 2019), underline

the importance of our microbial ‘‘second genome’’ in deter-

mining the biological activity of an individual’s BA pool. In addi-

tion, the strong correlation of plasma C4 with circulating triglyc-

eride-containing lipoproteins and specific LDL features in obese

subjects warrants dedicated evaluation when interfering with hu-

man BA metabolism in the context of NAFLD therapies. Indeed,

subjects with high initial BA synthesis rates (high C4) may

respond more pronouncedly to pharmacological FXR agonists

with respect to plasma and hepatic lipid parameters than sub-

jects with low synthesis rates. In view of the very large inter-indi-

vidual variations in BA concentration and composition present in

obese subjects (i.e., a target population for pharmacological in-

terventions with FXR or TGR5 modulators), it will be important to

define measures to assess basal activation status of FXR and

TGR5 in humans to allow for the design of effective personalized

therapies.

We acknowledge several limitations in present study. First, the

300-OB cohort comprises participants of only Dutch ethnicity.

The reported results are thus likely biased toward a region-spe-

cific genetic and microbial background. Second, this study

represents an association/correlation analysis based on a

cross-sectional study design, which means that the underlying

causalities andmechanisms of action remain unexplored. Longi-
8 Cell Reports 33, 108212, October 6, 2020
tudinal studies and, particularly, functional studies are thus

essential to reveal the underlying mechanisms of the reported

associations. Third, althoughwe have taken several confounding

factors into account, additional internal and external confound-

ing factors (e.g., physical status, mental health, and environ-

mental exposures) may have influenced outcomes. Fourth, given

the fact that it is practically impossible to collect andmix all feces

produced during 3 consecutive days, as needed for accurate

determination of BA synthesis from fecal output, fecal BA anal-

ysis relied on a sample taken from one single feces collection,

which might thus not exactly represent the ratio in which primary

BAs are being produced by the liver.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Fecal samples This study N/A

Blood samples This study N/A

Critical Commercial Assays

AllPrep DNA/RNA Mini Kit QIAGEN 80204

Quant-iT PicoGreen dsDNA Assay Life Technologies P7589

Nextera XT DNA Library Preparation kit Illumina FC-131-1096

HumanCoreExome-24 BeadChip Illumina https://www.illumina.com

Infinium OmniExpress-24 BeadChip Illumina https://www.illumina.com

Nightingale Lipidomics Nightingale https://nightingalehealth.com

Bile Acid Assays (Hoogerland et al., 2019) PMID: 31102537

Software and Algorithms

R (3.6.0) R Foundation http://www.r-project.org/

Java (1.8.0_74) Java https://www.java.com/en/

Michigan Imputation Server (Loh et al., 2016) PMID: 27694958

MetaPhlan (2.7.2) (Truong et al., 2015) PMID: 26418763

HUMAnN2 (Franzosa et al., 2018) PMID: 30377376

Prokka (1.11) (Seemann, 2014) PMID: 24642063

jMRUI (3.0) http://www.jmrui.eu http://www.jmrui.eu

Deposited Data

Raw metagenomics EGA https://www.ebi.ac.uk

Genotype HFGP http://www.humanfunctionalgenomics.org

Bile acid and lipid traits HFGP http://www.humanfunctionalgenomics.org

Clinical phenotypes HFGP http://www.humanfunctionalgenomics.org
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to Lead Contact, Folkert Kuipers (f.kuipers@umcg.

nl).

Materials Availability
The study did not generate any new reagents or materials.

Data and Code Availability
The accession number for the metagenomic sequencing data reported in this paper is deposited in the European Genome-Phenome

Archive (EGA, https://www.ebi.ac.uk/ega/home): EGAD00001004194. Other datasets including genotype, bile acid profiles, NMR-

based metabolome, and phenotypic data are available via: http://www.humanfunctionalgenomics.org

Analysis codes are available via:

https://github.com/GRONINGEN-MICROBIOME-CENTRE/Groningen-Microbiome/tree/master/Projects/300OB_BileAcids

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human participants
302 individuals aged 54 to 81 years were enrolled in the 300-OB cohort at the Radboud University Medical Center (Radboud UMC),

Nijmegen, the Netherlands. All participants had a body mass index (BMI) R 27 kg/m2 at screening (mean = 30.73, median = 29.89)

and the study has been approved by Radboud UMC with number NL46846.091.13 (Chen et al., 2020). Participants with a recent

cardiovascular event (myocardial infarction, transient ischemic attack, stroke < 6 months), a history of bariatric surgery or bowel
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resection, inflammatory bowel disease, renal dysfunction, increased bleeding tendency, use of oral or subcutaneous anti-coagulant

therapy, use of thrombocyte aggregation inhibitors other than acetylsalicylic acid and carbasalate calcium, or a contra-indication for

magnetic resonance imagingwere excluded from the study. All participating womenwere postmenopausal and did not use hormonal

replacement therapy. For all participants, blood samples were collected for BA, C4 and nuclear magnetic resonance (NMR)-based

lipidomics measurements in the morning following an overnight fast (Kurilshikov et al., 2019). Blood samples were also used for gen-

otyping. Fecal samples for metagenomics sequencing and BA measurements were collected the day before blood collection. The

present study includes the 297 participants for whom genotype, stool microbiome, medical records and fasting plasma metabolites

were available. Fasting plasma BAs were determined in 166 men and 131 women with an average age of 67.0 years (sd = 5.4). We

quantified stool BA and neutral sterol concentrations in 276 of these 297 participants.

METHOD DETAILS

Bile acids and their related entities
Levels of 15 BAs and C4 concentrations in fasting plasma were quantified by LC-MS procedures, as previously described (Eggink

et al., 2017; Hoogerland et al., 2019). In stool samples, we measured concentrations of 7 BAs and the neutral sterols cholesterol, di-

hydrocholesterol and coprostanol (Jakulj et al., 2016). We grouped BAs into the concentrations of total BAs, conjugated and uncon-

jugated BAs, and primary and secondary BAs based on their respective biological functionalities. We also calculated the relative pro-

portion of each BA and constructed five BA ratios to reflect hepatic and bacterial enzymatic activities: (1) the ratio of secondary versus

primary BAs for microbial activity, (2) the ratio of CA species (CA, GCA, TCA, DCA, GDCA, TDCA) versus CDCA species (CDCA,

GCDCA, TCDCA, LCA, GLCA, TLCA) for the relative activities of the two major hepatic BA biosynthesis pathways, (3) the ratio of un-

conjugated versus conjugated BAs, and (4) the ratio of taurine-conjugated versus glycine-conjugated BAs, (5) ratio between dehydro-

genase cholic acid species and deconjugated cholic acid species. We also calculated the proportions of each individual BA species

and of groups of BAs. This led to a total of 58 BA entities, with 54 of these present in more than 10% of the participants (Table S1). For

BA concentrations under the detection limit, we replaced the missing value with half of the minimum value of that specific BA.

Liver fat content quantification
Liver fat content was quantified using localized proton magnetic resonance spectroscopy (1H-MRS). A single cubical voxel of 27 mL

was positioned in the right lobe of the liver. The voxel was placed outside the biliary tree and blood vessels to avoid confounding the

region of interest. A STEAM localization sequence without water suppression was used for data acquisition. To minimize relaxation

effects on signal intensity, a long repetition time (TR = 3 s) and a short echo time (TE = 20 ms) were used. All MR spectra were

post-processed using the jMRUI software v3.0 package with the AMARES algorithm to determine water (4.7 ppm) and methylene

(1.3 ppm) resonance areas. Intrahepatic triglyceride content was expressed as a ratio ofmethylene signal area to the sumof thewater

and methylene signal areas (%).

Genotyping
Around half of the samples (n = 134) were genotyped using the Illumina HumanCoreExome-24 BeadChip Kit. All other samples (n =

168) were genotyped using the Illumina Infinium Omni-express chip. The two sets were merged by only keeping single nucleotide

polymorphisms (SNPs) present in both datasets. Imputation was done using the Michigan Imputation Server with the Haplotype

Reference Consortium reference panel hrc.r1.1.201691, and phasing was done by using Eagle (Loh et al., 2016). We excluded

SNPs that had imputation quality r2 < 0.3, failed the Hardy-Weinberg equilibrium test (p < 1 3 10�4), had a call rate < 99%, or had

a minor allele frequency (MAF) < 10%. In this way, we obtained genotype data for 4.3 million SNPs for all participants. After impu-

tation, principle component analysis was used to verify that there were no differences between the two datasets.

Microbial species and pathway abundances
All participantswere asked to collect a fecal sample at homeand to place it in their home freezer within 15minutes after production. Par-

ticipants then brought the sample in frozen state to the hospital, where the samples were placed on dry ice and transferred to the lab-

oratory. Aliquots were then made and stored at �80�C until further processing. Fecal DNA isolation was performed using the AllPrep

DNA/RNAMiniKit (QIAGEN; cat. 80204). AfterDNAextraction, fecalDNAwassent to theBroad Institute ofHarvardandMIT,Cambridge,

Massachusetts,USA,where library preparation andwhole genomeshotgun sequencingwereperformedon the IlluminaHiSeqplatform.

Low-quality reads were discarded from the raw metagenomic sequencing data by the sequencing facility, and reads belonging to the

human genome were removed by mapping the data to the human reference genome (version NCBI37) with Bowtie2 (v.2.1.0).

The relative abundance of gut microbial taxonomic units was determined using MetaPhlan v.2.7.2 (Truong et al., 2015). For these

analyses, we only included taxonomy data at species-level. Classified species present in > 10% of the samples were included for

further analyses. This yielded a list of 173 species. The relative abundances of metabolic pathways were determined using the

HUMAnN2 pipeline (Franzosa et al., 2018), which maps DNA/RNA reads to a customized database of functionally annotated pan-

genomes. HUMAnN2 reported the abundances of gene families from the UniProt Reference Clusters (UniRef90), which were further

mapped to microbial pathways from theMetaCycmetabolic pathway database. In total, 352microbial pathways present in > 10% of

samples were selected for subsequent analyses.
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Genomic annotation of Ruminococus sp_5_1_39BFAA
The reference genome of Ruminococus sp_5_1_39BFAA was downloaded from the National Center for Biotechnology Information

(NCBI) with accession number GCA_000159975.2. Prokka software (Seemann, 2014) was used to annotate the reference genome of

Ruminococus sp_5_1_39BFAA, which resulted in a list of genes with functional annotations. A gene (g000664) potentially encoding

choloylglycine hydrolase, a BA-deconjugation enzyme, has been annotated in the genome of this species. To validate whether the

classified gene has BA deconjugation abilities, we used SWISS-MODEL (Waterhouse et al., 2018) to predict its 3D structure based on

the translated amino acids sequence of this gene and compared this with existing choloylglycine hydrolase structures.

Plasma metabolite measurement
A wide range of plasma metabolites were measured using NMR and Nightingale’s Biomarker Analysis Platform. This platform pro-

vides measures of 231 plasma metabolome traits. Most of these are related to lipids, including total lipid concentrations, relative

compositions of 14 lipoprotein subclasses, lipoprotein particle sizes, and concentrations of apolipoproteins, cholesterol, triglycer-

ides and phospholipids. The measurements also include several glycolysis components, fatty acids, inflammation markers, ketone

bodies and amino acids (Kurilshikov et al., 2019). To validate platform precision, we compared several traits with corresponding

routine lipid measurements and observed a high degree of consistency (Kurilshikov et al., 2019). Finally, 225 metabolites present

in more than 10% of the participants were included in subsequent analyses.

QUANTIFICATION AND STATISTICAL ANALYSIS

Genome-wide associations
To identify potential genetic determinants of BAs, we performed quantitative trait locus (QTL) mapping by calculating Spearman cor-

relations between BA entities and SNP dosages. We also included the ratios of 7 BAmeasurements that were present in both plasma

and stool (the ratios of CA, LCA, DCA, CDCA, total BA, total primary BA and total secondary BA between plasma and stool samples)

in QTL mapping to identify potential BA receptors. Since a number of confounding factors can impact BAs, we first inverse-rank-

transformed BA entities and then stepwise adjusted for these confounding factors (Table S1) – age, sex, BMI, disease (diabetes, hy-

pertension and dyslipidemia), medication use (antidiabetic, antihypertensive and lipid-lowering agents), abundance of microbial spe-

cies and pathways – using linear regression. We then used the residuals for QTL mapping. We considered a genome-wide P value <

5 3 10�8 to be the threshold for significant BA QTLs (baQTLs). We report all independent baQTLs (clumping variants with linkage

disequilibrium r2 < 0.05 and a 500kb window; Watanabe et al., 2017) with a P value < 5 3 10�8. Finally, we also evaluated genetic

variants located in or near (within 250kb) confirmed BA metabolism–related genes at P value < 13 10�5 (63 genes in total, list avail-

able via: https://github.com/GRONINGEN-MICROBIOME-CENTRE).

Microbiome-wide correlation
To identify microbial BA determinants, we assessed correlations between the abundance levels of BA entities and microbial species

and pathways.Microbial species and pathway datasets were also inverse-rank-transformed and corrected for sequencing depth and

other covariates (age, sex, BMI, diseases andmedications), as we had donewith BA entities. To explore the correlations between the

39 BA entities and microbiome features (113 species and 335 pathways), we performed Spearman correlation tests and calculated

false discovery rate (FDR) based on 1000 times permutation.

Independent effects of genetics and microbiome
Since genetics may impact the gut microbiome (Chen et al., 2018), we checked for this impact on the BA entities that associated with

both genetics (p < 53 10�8) and themicrobiome at FDR < 0.05 (after adjusting for the covariates of age, sex, BMI, disease andmedi-

cation). In total, 16 BA entities associated to both genetics and microbiome. We checked the associations between independent

SNPs and microbial traits that correlated with the same BA entity using Spearman correlation.

Correlation between disease and medication phenotypes
To check whether BA entities can be related to liver fat content, the presence of disease (diabetes, hypertension and dyslipidemia)

and use of associated medications (antidiabetic, antihypertensive and lipid-lowering agents), we inverse-rank-transformed BA en-

tities and adjusted them for confounding factors age and sex. Spearman correlation was then used to access correlation strengths

and 1000 times permutations were applied to calculate FDR.

Correlation with disease-relevant plasma metabolites
We inverse-rank-transformed plasma metabolites and corrected them for the age and sex. Spearman correlation was carried out to

test the correlations between BA entities and disease-relevant plasma metabolites, and we calculated FDR based on 1000 times

permutations.
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