267 research outputs found

    Utilisation of key descriptors from protein sequence data to aid bioprocess route selection

    Get PDF
    The large-scale manufacture of biological products results in the generation of significant quantities of process information that can be used to inform future design decisions. Currently this information is not exploited to its full potential. The challenge is thus to identify and/or develop tools that allow the utilisation of this valuable resource. The main objective of the research reported in this paper was to investigate whether it was possible to utilise information, in particular that extracted from protein sequence data, from previous processes, with the goal of informing process route selection early in development. The approach adopted draws on tools in the areas of data mining and pattern recognition including the techniques of Fisher correlation score and self-organising maps. The methodology developed was applied to two case studies utilising data from the amino acid sequences of 41 proteins previously developed at Avecia Biologics, along with associated information relating to the downstream processing steps used during their large scale manufacture. The results demonstrate that information from previous processes can be used to inform process route selection

    Bright X-ray radiation from plasma bubbles in an evolving laser wakefield accelerator

    No full text
    We show that the properties of the electron beam and bright X-rays produced by a laser wakefield accelerator can be predicted if the distance over which the laser self-focuses and compresses prior to self-injection is taken into account. A model based on oscillations of the beam inside a plasma bubble shows that performance is optimised when the plasma length is matched to the laser depletion length. With a 200~TW laser pulse this results in an X-ray beam with median photon energy of 20 keV, >109> 10^{9} photons per shot and a peak brightness of 4×10234 \times 10^{23} photons s−1^{-1} mrad−2^{-2} mm−2^{-2} (0.1 % BW)−1^{-1}

    On the Ethics of Trade Credit: Understanding Good Payment Practice in the Supply Chain

    Get PDF
    In spite of its commercial importance and signs of clear concern in public policy arenas, trade credit has not been subjected to systematic, extended analysis in the business ethics literature, even where suppliers as a stakeholder group have been considered. This paper makes the case for serious consideration of the ethics of trade credit and explores the issues surrounding slow payment of debts. It discusses trade debt as a kind of promise, but— noting that not all promises are good ones—goes on to develop an analysis of the ethics of trade credit grounded in an understanding of its fundamental purpose. Making a distinction between ‘‘operating’’ trade credit and ‘‘financial’’ trade credit, the paper provides an account of the maximum period for which it is appropriate for one company to delay payment to another from which it has purchased goods or services. The concern of commentators and policy makers that companies should not take too long to pay their debts is affirmed, but the understanding of what timely payment means is significantly finessed, with one conclusion being that, if debts have not already been settled according to acceptable standard terms of trade, cash should pass quickly back along the supply chain once the customer in the final product market has paid. The analysis has implications not only for companies that take credit but also for external parties that seek to rate companies or set regulations according to speed of payment—an approach that is shown to be misleadingly simplistic, albeit well intentioned. A corresponding important responsibility for suppliers, not to extend excessive credit (and thus act as a quasi-bank), also follows from the analysis developed. Having provided a novel analysis of an important business problem, the paper then discusses some of the related practical issues and makes suggestions for further research

    Thar She Blows! A Novel Method for DNA Collection from Cetacean Blow

    Get PDF
    Background: Molecular tools are now widely used to address crucial management and conservation questions. To date, dart biopsying has been the most commonly used method for collecting genetic data from cetaceans; however, this method has some drawbacks. Dart biopsying is considered inappropriate for young animals and has recently come under scrutiny from ethical boards, conservationists, and the general public. Thus, identifying alternative genetic collection techniques for cetaceans remains a priority, especially for internationally protected species. Methodology/Principal Findings: In this study, we investigated whether blow-sampling, which involves collecting exhalations from the blowholes of cetaceans, could be developed as a new less invasive method for DNA collection. Our current methodology was developed using six bottlenose dolphins, Tursiops truncatus, housed at the National Aquarium, Baltimore (USA), from which we were able to collect both blow and blood samples. For all six individuals, we found that their mitochondrial and microsatellite DNA profile taken from blow, matched their corresponding mitochondrial and microsatellite DNA profile collected from blood. This indicates that blow-sampling is a viable alternative method for DNA collection. Conclusion/Significance: In this study, we show that blow-sampling provides a viable and less invasive method for collection of genetic data, even for small cetaceans. In contrast to dart biopsying, the advantage of this method is that it capitalizes on the natural breathing behaviour of dolphins and can be applied to even very young dolphins. Both biopsy and blow-sampling require close proximity of the boat, but blow-sampling can be achieved when dolphins voluntarily bowride and involves no harmful contact

    A Selective HDAC 1/2 Inhibitor Modulates Chromatin and Gene Expression in Brain and Alters Mouse Behavior in Two Mood-Related Tests

    Get PDF
    Psychiatric diseases, including schizophrenia, bipolar disorder and major depression, are projected to lead global disease burden within the next decade. Pharmacotherapy, the primary – albeit often ineffective – treatment method, has remained largely unchanged over the past 50 years, highlighting the need for novel target discovery and improved mechanism-based treatments. Here, we examined in wild type mice the impact of chronic, systemic treatment with Compound 60 (Cpd-60), a slow-binding, benzamide-based inhibitor of the class I histone deacetylase (HDAC) family members, HDAC1 and HDAC2, in mood-related behavioral assays responsive to clinically effective drugs. Cpd-60 treatment for one week was associated with attenuated locomotor activity following acute amphetamine challenge. Further, treated mice demonstrated decreased immobility in the forced swim test. These changes are consistent with established effects of clinical mood stabilizers and antidepressants, respectively. Whole-genome expression profiling of specific brain regions (prefrontal cortex, nucleus accumbens, hippocampus) from mice treated with Cpd-60 identified gene expression changes, including a small subset of transcripts that significantly overlapped those previously reported in lithium-treated mice. HDAC inhibition in brain was confirmed by increased histone acetylation both globally and, using chromatin immunoprecipitation, at the promoter regions of upregulated transcripts, a finding consistent with in vivo engagement of HDAC targets. In contrast, treatment with suberoylanilide hydroxamic acid (SAHA), a non-selective fast-binding, hydroxamic acid HDAC 1/2/3/6 inhibitor, was sufficient to increase histone acetylation in brain, but did not alter mood-related behaviors and had dissimilar transcriptional regulatory effects compared to Cpd-60. These results provide evidence that selective inhibition of HDAC1 and HDAC2 in brain may provide an epigenetic-based target for developing improved treatments for mood disorders and other brain disorders with altered chromatin-mediated neuroplasticity.Stanley Medical Research InstituteNational Institutes of Health (U.S.) (R01DA028301)National Institutes of Health (U.S.) (R01DA030321

    Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe

    Get PDF
    Seismic tomography and the isotope geochemistry of Cenozoic volcanic rocks suggest the existence of a large, sheet-like region of upwelling in the upper mantle which extends from the eastern Atlantic Ocean to central Europe and the western Mediterranean. A belt of extension and rifting in the latter two areas appears to lie above the intersection of the centre of the upwelling region with the base of the lithosphere. Lead, strontium and neodymium isotope data for all three regions converge on a restricted composition, inferred to be that of the upwelling mantle

    Developmental perspectives on interpersonal affective touch

    Get PDF
    In the last decade, philosophy, neuroscience and psychology alike have paid increasing attention to the study of interpersonal affective touch, which refers to the emotional and motivational facets of tactile sensation. Some aspects of affective touch have been linked to a neurophysiologically specialised system, namely the C tactile (CT) system. While the role of this sys-tem for affiliation, social bonding and communication of emotions have been widely investigated, only recently researchers have started to focus on the potential role of interpersonal affective touch in acquiring awareness of the body as our own, i.e. as belonging to our psychological ‘self’. We review and discuss recent developmental and adult findings, pointing to the central role of interpersonal affective touch in body awareness and social cognition in health and disorders. We propose that interpersonal affective touch, as an interoceptive modality invested of a social nature, can uniquely contribute to the ongoing debate in philosophy about the primacy of the relational nature of the minimal self

    Elevated Uptake of Plasma Macromolecules by Regions of Arterial Wall Predisposed to Plaque Instability in a Mouse Model

    Get PDF
    Atherosclerosis may be triggered by an elevated net transport of lipid-carrying macromolecules from plasma into the arterial wall. We hypothesised that whether lesions are of the thin-cap fibroatheroma (TCFA) type or are less fatty and more fibrous depends on the degree of elevation of transport, with greater uptake leading to the former. We further hypothesised that the degree of elevation can depend on haemodynamic wall shear stress characteristics and nitric oxide synthesis. Placing a tapered cuff around the carotid artery of apolipoprotein E -/- mice modifies patterns of shear stress and eNOS expression, and triggers lesion development at the upstream and downstream cuff margins; upstream but not downstream lesions resemble the TCFA. We measured wall uptake of a macromolecular tracer in the carotid artery of C57bl/6 mice after cuff placement. Uptake was elevated in the regions that develop lesions in hyperlipidaemic mice and was significantly more elevated where plaques of the TCFA type develop. Computational simulations and effects of reversing the cuff orientation indicated a role for solid as well as fluid mechanical stresses. Inhibiting NO synthesis abolished the difference in uptake between the upstream and downstream sites. The data support the hypothesis that excessively elevated wall uptake of plasma macromolecules initiates the development of the TCFA, suggest that such uptake can result from solid and fluid mechanical stresses, and are consistent with a role for NO synthesis. Modification of wall transport properties might form the basis of novel methods for reducing plaque rupture
    • …
    corecore