20 research outputs found

    Altered Ca2+ Homeostasis in Immune Cells during Aging: Role of Ion Channels

    Get PDF
    Aging is an unstoppable process and begins shortly after birth. Each cell of the organism is affected by the irreversible process, not only with equal density but also at varying ages and with different speed. Therefore, aging can also be understood as an adaptation to a continually changing cellular environment. One of these very prominent changes in age affects Ca2+ signaling. Especially immune cells highly rely on Ca2+-dependent processes and a strictly regulated Ca2+ homeostasis. The intricate patterns of impaired immune cell function may represent a deficit or compensatory mechanisms. Besides, altered immune function through Ca2+ signaling can profoundly affect the development of age-related disease. This review attempts to summarize changes in Ca2+ signaling due to channels and receptors in T cells and beyond in the context of aging

    Faster cytotoxicity with age : Increased perforin and granzyme levels in cytotoxic CD8+ T cells boost cancer cell elimination

    Get PDF
    A variety of intrinsic and extrinsic factors contribute to the altered efficiency of CTLs in elderly organisms. In particular, the efficacy of antiviral CD8+ T cells responses in the elderly has come back into focus since the COVID-19 pandemic outbreak. However, the exact molecular mechanisms leading to alterations in T cell function and the origin of the observed impairments have not been fully explored. Therefore, we investigated whether intrinsic changes affect the cytotoxic ability of CD8+ T cells in aging. We focused on the different subpopulations and time-resolved quantification of cytotoxicity during tumor cell elimination. We report a surprising result: Killing kinetics of CD8+ T cells from elderly mice are much faster than those of CD8+ T cells from adult mice. This is true not only in the total CD8+ T cell population but also for their effector (TEM) and central memory (TCM) T cell subpopulations. TIRF experiments reveal that CD8+ T cells from elderly mice possess comparable numbers of fusion events per cell, but significantly increased numbers of cells with granule fusion. Analysis of the cytotoxic granule (CG) content shows significantly increased perforin and granzyme levels and turns CD8+ T cells of elderly mice into very efficient killers. This highlights the importance of distinguishing between cell-intrinsic alterations and microenvironmental changes in elderly individuals. Our results also stress the importance of analyzing the dynamics of CTL cytotoxicity against cancer cells because, with a simple endpoint lysis analysis, cytotoxic differences could have easily been overlooked

    High Glucose Enhances Cytotoxic T Lymphocyte-Mediated Cytotoxicity.

    Get PDF
    peer reviewedCytotoxic T lymphocytes (CTLs) are key players to eliminate tumorigenic or pathogen-infected cells using lytic granules (LG) and Fas ligand (FasL) pathways. Depletion of glucose leads to severely impaired cytotoxic function of CTLs. However, the impact of excessive glucose on CTL functions still remains largely unknown. Here we used primary human CD8+ T cells, which were stimulated by CD3/CD28 beads and cultured in medium either containing high glucose (HG, 25 mM) or normal glucose (NG, 5.6 mM). We found that in HG-CTLs, glucose uptake and glycolysis were enhanced, whereas proliferation remained unaltered. Furthermore, CTLs cultured in HG exhibited an enhanced CTL killing efficiency compared to their counterparts in NG. Unexpectedly, expression of cytotoxic proteins (perforin, granzyme A, granzyme B and FasL), LG release, cytokine/cytotoxic protein release and CTL migration remained unchanged in HG-cultured CTLs. Interestingly, additional extracellular Ca2+ diminished HG-enhanced CTL killing function. Our findings suggest that in an environment with excessive glucose, CTLs could eliminate target cells more efficiently, at least for a certain period of time, in a Ca2+-dependent manner

    Prisoners co-infected with tuberculosis and HIV: a systematic review.

    Get PDF
    INTRODUCTION: Almost from the beginning of the HIV epidemic in 1981, an association with tuberculosis (TB) was recognized. This association between HIV and TB co-infection has been particularly evident amongst prisoners. However, despite this, few studies of TB in prisons have stratified results by HIV status. Given the high prevalence of HIV-positive persons and TB-infected persons in prisons and the documented risk of TB in those infected with HIV, it is of interest to determine how co-infection varies amongst prison populations worldwide. For this reason we have undertaken a systematic review of studies of co-infected prisoners to determine the incidence and/or prevalence of HIV/TB co-infection in prisons, as well as outcomes in this group, measured as treatment success or death. METHODS: A literature search was undertaken using the online databases PubMed, Embase, IBSS, Scopus, Web of Science, Global Health and CINAHL Plus. No restrictions were set on language or publication date for article retrieval, with articles included if indexed up to 18 October 2015. A total of 1975 non-duplicate papers were identified. For treatment and outcome data all eligible papers were appraised for inclusion; for incidence/prevalence estimates papers published prior to 2000 were excluded from full text review. After full text appraisal, 46 papers were selected for inclusion in the review, 41 for incidence/prevalence estimates and nine for outcomes data, with four papers providing evidence for both outcomes and prevalence/incidence. RESULTS: Very few studies estimated the incidence of TB in HIV positive prisoners, with most simply reporting prevalence of co-infection. Co-infection is rarely explicitly measured, with studies simply reporting HIV status in prisoners with TB, or a cross-sectional survey of TB prevalence amongst prisoners with HIV. Estimates of co-infection prevalence ranged from 2.4 to 73.1% and relative risks for one, given the other, ranged from 2.0 to 10.75, although some studies reported no significant association between HIV and TB. Few studies provided a comparison with the risk of co-infection in the general population. CONCLUSIONS: Prisoners infected with HIV are at high risk of developing TB. However, the magnitude of risk varies between different prisons and countries. There is little evidence on treatment outcomes in co-infected prisoners, and the existing evidence is conflicting in regards to HIV status influence on prisoner treatment outcomes.PROSPERO Number: CRD42016034068

    Protonation of lipids impacts the supramolecular and biological properties of their self-assembly.

    No full text
    International audienceWe assessed in this work how a chemical structure difference could influence a supramolecular organization and then its biological properties. In our case study, we considered two amphiphilic lipidic gene vectors. The chemical difference was situated on their hydrophilic part which was either a pure neutral thiourea head or a mixture of three thiourea function derivatives, thiourea, iminothiol, and charged iminothiol. This small difference was obtained thanks to the last chemical deprotection conditions of the polar head hydroxyl groups. Light, neutron, and X-ray scattering techniques have been used to investigate the spatial structure of the liposomes and lipoplexes formed by the lipids. The chemical structure difference impacts the supramolecular assemblies of the lipids and with DNA as shown by fluorescence correlation spectroscopy (FCS), X-ray, and neutron scattering. Hence the structures formed were found to be highly different in terms of liposomes to DNA ratio and size and polydispersity of the aggregates. Finally, the transfection and internalization results proved that the differences in the structure of the lipid aggregates fully affect the biological properties of the lipopolythiourea compounds. The lipid containing three functions is a better gene transfection agent than the lipid which only contains one thiourea moiety. As a conclusion, we showed that the conditions of the last chemical step can influence the lipidic supramolecular structure which in turn strongly impacts their biological properties

    From population reference to national standard: new and improved birthweight charts

    No full text
    Background: Antenatal detection of intrauterine growth restriction remains a major obstetrical challenge, with the majority of cases not detected before birth. In these infants with undetected intrauterine growth restriction, the diagnosis must be made after birth. Clinicians use birthweight charts to identify infants as small-for-gestational-age if their birthweights are below a predefined threshold for gestational age. The choice of birthweight chart strongly affects the classification of small-for-gestational-age infants and has an impact on both research findings and clinical practice. Despite extensive literature on pathological risk factors associated with small-for-gestational-age, controversy exists regarding the exclusion of affected infants from a reference population. Objective: This study aims to identify pathological risk factors for abnormal fetal growth, to quantify their effects, and to use these findings to calculate prescriptive birthweight charts for the Dutch population. Materials and Methods: We performed a retrospective cross-sectional study, using routinely collected data of 2,712,301 infants born in The Netherlands between 2000 and 2014. Risk factors for abnormal fetal growth were identified and categorized in 7 groups: multiple gestation, hypertensive disorders, diabetes, other pre-existing maternal medical conditions, maternal substance (ab)use, medical conditions related to the pregnancy, and congenital malformations. The effects of these risk factors on mean birthweight were assessed using linear regression. Prescriptive birthweight charts were derived from live-born singleton infants, born to ostensibly healthy mothers after uncomplicated pregnancies and spontaneous onset of labor. The Box-Cox-t distribution was used to model birthweight and to calculate sex-specific percentiles. The new charts were compared to various existing birthweight and fetal-weight charts. Results: We excluded 111,621 infants because of missing data on birthweight, gestational age or sex, stillbirth, or a gestational age not between 23 and 42 weeks. Of the 2,599,640 potentially eligible infants, 969,552 (37.3%) had 1 or more risk factors for abnormal fetal growth and were subsequently excluded. Large absolute differences were observed between the mean birthweights of infants with and without these risk factors, with different patterns for term and preterm infants. The final low-risk population consisted of 1,629,776 live-born singleton infants (50.9% male), from which sex-specific percentiles were calculated. Median and 10th percentiles closely approximated fetal-weight charts but consistently exceeded existing birthweight charts. Conclusion: Excluding risk factors that cause lower birthweights results in prescriptive birthweight charts that are more akin to fetal-weight charts, enabling proper discrimination between normal and abnormal birthweight. This proof of concept can be applied to other populations
    corecore