310 research outputs found

    The Leishmania major BBSome subunit BBS1 is essential for parasite virulence in the mammalian host

    Get PDF
    Bardet–Biedl syndrome (BBS) is a human genetic disorder with a spectrum of symptoms caused by primary cilium dysfunction. The disease is caused by mutations in one of at least 17 identified genes, of which seven encode subunits of the BBSome, a protein complex required for specific trafficking events to and from the primary cilium. The molecular mechanisms associated with BBSome function remain to be fully elucidated. Here, we generated null and complemented mutants of the BBSome subunit BBS1 in the protozoan parasite, Leishmania. In the absence of BBS1, extracellular parasites have no apparent defects in growth, flagellum assembly, motility or differentiation in vitro but there is accumulation of vacuole-like structures close to the flagellar pocket. Infectivity of these parasites for macrophages in vitro is reduced compared with wild-type controls but the null parasites retain the ability to differentiate to the intracellular amastigote stage. However, infectivity of BBS1 null parasites is severely compromised in a BALB/c mouse footpad model. We hypothesize that the absence of BBS1 in Leishmania leads to defects in specific trafficking events that affect parasite persistence in the host. This is the first report of an association between the BBSome complex and pathogen infectivity

    S6K2-mediated regulation of TRBP as a determinant of miRNA expression in human primary lymphatic endothelial cells

    Get PDF
    MicroRNAs (miRNAs) are short non-coding RNAs that silence mRNAs. They are generated following transcription and cleavage by the DROSHA/DGCR8 and DICER/TRBP/PACT complexes. Although it is known that components of the miRNA biogenesis machinery can be phosphorylated, it remains poorly understood how these events become engaged during physiological cellular activation. We demonstrate that S6 kinases can phosphorylate the extended C-terminal domain of TRBP and interact with TRBP in situ in primary cells. TRBP serines 283/286 are essential for S6K-mediated TRBP phosphorylation, optimal expression of TRBP, and the S6K-TRBP interaction in human primary cells. We demonstrate the functional relevance of this interaction in primary human dermal lymphatic endothelial cells (HDLECs). Angiopoietin-1 (ANG1) can augment miRNA biogenesis in HDLECs through enhancing TRBP phosphorylation and expression in an S6K2-dependent manner. We propose that the S6K2/TRBP node controls miRNA biogenesis in HDLECs and provides a molecular link between the mTOR pathway and the miRNA biogenesis machinery

    The Orthologue of Sjögren's Syndrome Nuclear Autoantigen 1 (SSNA1) in Trypanosoma brucei Is an Immunogenic Self-Assembling Molecule

    Get PDF
    Primary Sjögren's Syndrome (PSS) is a highly prevalent autoimmune disease, typically manifesting as lymphocytic infiltration of the exocrine glands leading to chronically impaired lacrimal and salivary secretion. Sjögren's Syndrome nuclear autoantigen 1 (SSNA1 or NA14) is a major specific target for autoantibodies in PSS but the precise function and clinical relevance of this protein are largely unknown. Orthologues of the gene are absent from many of the commonly used model organisms but are present in Chlamyodomonas reinhardtii (in which it has been termed DIP13) and most protozoa. We report the functional characterisation of the orthologue of SSNA1 in the kinetoplastid parasite, Trypanosoma brucei. Both TbDIP13 and human SSNA1 are small coiled-coil proteins which are predicted to be remote homologues of the actin-binding protein tropomyosin. We use comparative proteomic methods to identify potential interacting partners of TbDIP13. We also show evidence that TbDIP13 is able to self-assemble into fibril-like structures both in vitro and in vivo, a property which may contribute to its immunogenicity. Endogenous TbDIP13 partially co-localises with acetylated α-tubulin in the insect procyclic stage of the parasite. However, deletion of the DIP13 gene in cultured bloodstream and procyclic stages of T. brucei has little effect on parasite growth or morphology, indicating either a degree of functional redundancy or a function in an alternative stage of the parasite life cycle

    Argonaute Utilization for miRNA Silencing Is Determined by Phosphorylation-Dependent Recruitment of LIM-Domain-Containing Proteins

    Get PDF
    As core components of the microRNA-induced silencing complex (miRISC), Argonaute (AGO) proteins interact with TNRC6 proteins, recruiting other effectors of translational repression/mRNA destabilization. Here, we show that LIMD1 coordinates the assembly of an AGO-TNRC6 containing miRISC complex by binding both proteins simultaneously at distinct interfaces. Phosphorylation of AGO2 at Ser 387 by Akt3 induces LIMD1 binding, which in turn enables AGO2 to interact with TNRC6A and downstream effector DDX6. Conservation of this serine in AGO1 and 4 indicates this mechanism may be a fundamental requirement for AGO function and miRISC assembly. Upon CRISPR-Cas9-mediated knockout of LIMD1, AGO2 miRNA-silencing function is lost and miRNA silencing becomes dependent on a complex formed by AGO3 and the LIMD1 family member WTIP. The switch to AGO3 utilization occurs due to the presence of a glutamic acid residue (E390) on the interaction interface, which allows AGO3 to bind to LIMD1, AJUBA, and WTIP irrespective of Akt signaling

    The Salmonella effector SseJ disrupts microtubule dynamics when ectopically expressed in Normal Rat Kidney cells

    Get PDF
    Salmonella effector protein SseJ is secreted by Salmonella into the host cell cytoplasm where it can then modify host cell processes. Whilst host cell small GTPase RhoA has previously been shown to activate the acyl-transferase activity of SseJ we show here an un-described effect of SseJ protein production upon microtubule dynamism. SseJ prevents microtubule collapse and this is independent of SseJ's acyl-transferase activity. We speculate that the effects of SseJ on microtubules would be mediated via its known interactions with the small GTPases of the Rho family

    "Feed from the Service": Corruption and Coercion in the State-University Relations in Central Eurasia

    Get PDF
    Education in Central Eurasia has become one of the industries, most affected by corruption. Corruption in academia, including bribery, extortions, embezzlement, nepotism, fraud, cheating, and plagiarism, is reflected in the region’s media and addressed in few scholarly works. This paper considers corruption in higher education as a product of interrelations between the government and academia. A substantial block of literature considers excessive corruption as an indicator of a weak state. In contrast to standard interpretations, this paper argues that in non-democratic societies corruption is used on a systematic basis as a mechanism of direct and indirect administrative control over higher education institutions. Informal approval of corrupt activities in exchange for loyalty and compliance with the regime may be used in the countries of Central Eurasia for the purposes of political indoctrination. This paper presents the concept of corruption and coercion in the state-university relations in Central Eurasia and outlines the model which incorporates this concept and the “feed from the service” approach. It presents implications of this model for the state-university relations and the national educational systems in Central Eurasia in general and offers some suggestions on curbing corruption

    Supplementing High-Density SNP Microarrays for Additional Coverage of Disease-Related Genes: Addiction as a Paradigm

    Get PDF
    Commercial SNP microarrays now provide comprehensive and affordable coverage of the human genome. However, some diseases have biologically relevant genomic regions that may require additional coverage. Addiction, for example, is thought to be influenced by complex interactions among many relevant genes and pathways. We have assembled a list of 486 biologically relevant genes nominated by a panel of experts on addiction. We then added 424 genes that showed evidence of association with addiction phenotypes through mouse QTL mappings and gene co-expression analysis. We demonstrate that there are a substantial number of SNPs in these genes that are not well represented by commercial SNP platforms. We address this problem by introducing a publicly available SNP database for addiction. The database is annotated using numeric prioritization scores indicating the extent of biological relevance. The scores incorporate a number of factors such as SNP/gene functional properties (including synonymy and promoter regions), data from mouse systems genetics and measures of human/mouse evolutionary conservation. We then used HapMap genotyping data to determine if a SNP is tagged by a commercial microarray through linkage disequilibrium. This combination of biological prioritization scores and LD tagging annotation will enable addiction researchers to supplement commercial SNP microarrays to ensure comprehensive coverage of biologically relevant regions

    Leishmania-Specific Surface Antigens Show Sub-Genus Sequence Variation and Immune Recognition

    Get PDF
    Single-celled Leishmania parasites, transmitted by sand flies, infect humans and other mammals in many tropical and sub-tropical regions, giving rise to a spectrum of diseases called the leishmaniases. Species of parasite within the Leishmania genus can be divided into two groups (referred to as sub-genera) that are separated by up to 100 million years of evolution yet are highly related at the genome level. Our research is focused on identifying gene differences between these sub-genera that may identify proteins that impact on the transmission and pathogenicity of different Leishmania species. Here we report the presence of a highly-variant genomic locus (OHL) that was previously described as absent in parasites of the L. (Viannia) subgenus (on the basis of lack of key genes) but is present and well-characterised (as the LmcDNA16 locus) in all members of the alternative subgenus, L. (Leishmania). We demonstrate that the proteins encoded within the LmcDNA16 and OHL loci are similar in their structure and surface localisation in mammalian-infective amastigotes, despite significant differences in their DNA sequences. Most importantly, we demonstrate that the OHL locus proteins, like the HASP proteins from the LmcDNA16 locus, contain highly variable amino acid repeats that are antigenic in man and may therefore contribute to future vaccine development
    corecore