1,081 research outputs found

    Mode transitions in Northern Hemisphere glaciation: co-evolution of millennial and orbital variability in Quaternary climate

    Get PDF
    We present a 3.2 Myr record of stable isotopes and physical properties at IODP Site U1308 (reoccupation of DSDP Site 609) located within the ice-rafted detritus (IRD) belt of the North Atlantic. We compare the isotope and lithological proxies at Site U1308 with other North Atlantic records (e.g., sites 982, 607/U1313, and U1304) to reconstruct the history of orbital and millennial-scale climate variability during the Quaternary. The Site U1308 record documents a progressive increase in the intensity of Northern Hemisphere glacial–interglacial cycles during the late Pliocene and Quaternary, with mode transitions at  ∼  2.7, 1.5, 0.9, and 0.65 Ma. These transitions mark times of change in the growth and stability of Northern Hemisphere ice sheets. They also coincide with increases in vertical carbon isotope gradients between the intermediate and deep ocean, suggesting changes in deep carbon storage and atmospheric CO2. Orbital and millennial climate variability co-evolved during the Quaternary such that the trend towards larger and thicker ice sheets was accompanied by changes in the style, frequency, and intensity of millennial-scale variability. This co-evolution may be important for explaining the observed patterns of Quaternary climate change

    Abrupt weakening of the summer monsoon in northwest India ~4100 yr ago

    Get PDF
    Climate change has been suggested as a possible cause for the decline of urban centers of the Indus Civilization ∼4000 yr ago, but extant paleoclimatic evidence has been derived from locations well outside the distribution of Indus settlements. Here we report an oxygen isotope record of gastropod aragonite (δ18Oa) from Holocene sediments of paleolake Kotla Dahar (Haryana, India), which is adjacent to Indus settlements and documents Indian summer monsoon (ISM) variability for the past 6.5 k.y. A 4‰ increase in δ18Oa occurred at ca. 4.1 ka marking a peak in the evaporation/precipitation ratio in the lake catchment related to weakening of the ISM. Although dating uncertainty exists in both climate and archaeological records, the drought event 4.1 ka on the northwestern Indian plains is within the radiocarbon age range for the beginning of Indus de-urbanization, suggesting that climate may have played a role in the Indus cultural transformation

    Rhizon sampler alteration of deep ocean sediment interstitial water samples, as indicated by chloride concentration and oxygen and hydrogen isotopes

    Get PDF
    Despite their potential to inform past ocean salinity, δ^(18)O, and temperature, high-resolution depth profiles of interstitial water chloride concentration and hydrogen and oxygen isotopes exist in very few locations. One of the primary limitations to the recovery of these depth profiles is that traditional interstitial water sampling requires 5–10 cm whole rounds of the sediment core, which has the potential to interfere with stratigraphic continuity. The Rhizon sampler, a nondestructive tool developed for terrestrial sediment interstitial water extraction, has been proposed for efficient and nondestructive sampling of ocean sediment pore waters. However, there exists little documentation on the reliability and performance of Rhizon samplers in deep ocean sediments, particularly in regard to their effect on chloride concentration and oxygen and hydrogen isotopic measurements. We perform an intercomparison of chloride concentration and oxygen and hydrogen isotopic composition in samples taken using traditional squeezing versus those taken with Rhizon samplers. We find that samples taken with Rhizons have positive biases in both chloride concentration and stable isotopic ratios relative to those taken by squeezing water from sediments in a hydraulic press. The measured offsets between Rhizon and squeeze samples are consistent with a combination of absorption by and diffusive fractionation through the hydrophilic membrane of the Rhizon sampler. These results suggest caution is needed when using Rhizons for sampling interstitial waters in any research of processes that leave a small signal-to-noise ratio in dissolved concentrations or isotope ratios

    Precise and accurate isotope fractionation factors (α17O, α18O and αD) for water and CaSO4·2H2O (gypsum)

    Get PDF
    Gypsum (CaSO4·2H2O) is a hydrated mineral containing crystallization water, also known as gypsum hydration water (GHW). We determined isotope fractionation factors (α17O, α18O and αD) between GHW and free water of the mother solution in the temperature range from 3 °C to 55 °C at different salinities and precipitation rates. The hydrogen isotope fractionation factor (αDgypsum-water) increases by 0.0001 units per °C between 3 °C and 55 °C and salinities <150 g/L of NaCl. The αDgypsum-water is 0.9812 ± 0.0007 at 20 °C, which is in good agreement with previous estimates of 0.981 ± 0.001 at the same temperature. The α18Ogypsum-water slightly decreases with temperature by 0.00001 per °C, which is not significant over much of the temperature range considered for paleoclimate applications. Between 3 °C and 55 °C, α18Ogypsum-water averages 1.0035 ± 0.0002. This value is more precise than that reported previously (e.g. 1.0041 ± 0.0004 at 25 °C) and lower than the commonly accepted value of 1.004. We found that NaCl concentrations below 150 g/L do not significantly affect α18Ogypsum-water, but αDgypsum-water increases linearly with NaCl concentrations even at relatively low salinities, suggesting a salt correction is necessary for gypsum formed from brines. Unlike oxygen isotopes, the αDgypsum-water is affected by kinetic effects that increase with gypsum precipitation rate. As expected, the relationship of the fractionation factors for 17O and 18O follows the theoretical mass-dependent fractionation on Earth (θ = 0.529 ± 0.001). We provide specific examples of the importance of using the revised fractionation factors when calculating the isotopic composition of the fluids

    High-resolution pleistocene diatom biostratigraphy of site 983 and correlations with isotope stratigraphy

    Get PDF
    International audienceHigh accumulation rates and the presence of well-preserved, abundant diatoms in Site 983 sediments from the Gardar Drift gave us the opportunity to refine the Pleistocene diatom biostratigraphic resolution of the high-latitude North Atlantic. Eight Pleistocene diatom datum events are identified and, for the first time, tied directly to the oxygen isotope record and paleomagnetic stratigraphy of Site 983. These datum events are (1) the last occurrence (LO) of Proboscia curvirostris at 0.3 Ma, (2) the LO of Thalassiosira jouseae at 0.3 Ma, (3) the LO of Nitzschia reinholdii at 0.6 Ma, (4) the LO of Nitzschia fossilis at 0.68 Ma, (5) the LO of Nitzschia seminae at 0.84 Ma, (6) the first occurrence (FO) of N. seminae at 1.25 Ma, (7) the FO of Proboscia curvirostris at 1.53 Ma, and (8) the FO of Pseudoeunotia doliolus at 1.89 Ma. Most of these datums are found to be synchronous between the middle and high latitudes of the North Atlantic and the North Pacific. On the basis of these datums, four highlatitude North Atlantic diatom zones are proposed for the Pleistocene. The record of diatom abundance and preservation at Site 983 gives evidence for the influence of fluctuating Pleistocene climatic conditions on diatom productivity in the high-latitude North Atlantic

    Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean

    Get PDF
    We demonstrate that the carbon isotopic signal of mid-depth waters evolved differently from deep waters in the South Atlantic sector of the Southern Ocean during the Pleistocene. Deep sites (>3700 m) exhibit large glacial-to-interglacial variations in benthic d13C, whereas the amplitude of the d13C signal at Site 1088 (2100 m water depth) is small. Unlike the deep sites, at no time during the Pleistocene were benthic d13C values at Site 1088 lower than those of the deep Pacific. Reconstruction of intermediate-todeep d13C gradients (D13CI-D) supports the existence of a sharp chemocline between 2100 and 2700 m during most glacial stages of the last 1.1 myr. This chemical divide in the glacial Southern Ocean separated well-ventilated water above 2500 m from poorly ventilated water below. The D13CI-D signal parallels the Vostok atmospheric pCO2 record for the last 400 kyr, lending support to physical models that invoke changes in Southern Ocean deep water ventilation as a mechanism for changing atmospheric pCO2. The emergence of a strong 100-kyr cycle in D13CI-D during the mid-Pleistocene supports a change in vertical fractionation and deep-water ventilation rates in the Southern Ocean, and is consistent with possible CO2- forcing of this climate transition. Components: 7562 words, 14 figures, 2 tables

    Abrupt weakening of the Indian summer monsoon at 8.2 kyr B.P.

    Get PDF
    An oxygen isotope record of biogenic carbonate from paleolake Riwasa in northwestern (NW) India provides a history of the Indian Summer Monsoon (ISM) from ∼11 to 6 kyr B.P. The lake was dry throughout the Late Glacial period when aeolian sands were deposited. Lacustrine sedimentation commenced in the early Holocene and the lake deepened significantly at ∼9.4 kyr B.P., indicating a strengthening of the ISM in response to summer insolation forcing. This high lake stand was interrupted by an abrupt desiccation, which is marked by a 12-cm limestone hardground that formed during a period of sub-aerial exposure after ∼8.3 kyr B.P. The base of the hardground surface coincides with the beginning of the ‘8.2-kyr B.P. cooling event’ in the North Atlantic that has been associated with a glacial outburst flood and slowdown of Atlantic meridional overturning circulation. The hardground provides robust evidence of a weakening of the ISM on the Indian subcontinent at ∼8.2 kyr B.P., and supports previous results of a strong teleconnection between monsoon Asia and North Atlantic climate. Lacustrine sedimentation resumed at ∼7.9 kyr B.P. suggesting the 8.2-kyr desiccation of paleolake Riwasa represented an abrupt response of the ISM to forcing from the North Atlantic

    Rhizon sampler alteration of deep ocean sediment interstitial water samples, as indicated by chloride concentration and oxygen and hydrogen isotopes

    Get PDF
    Despite their potential to inform past ocean salinity, δ18O, and temperature, high-resolution depth profiles of interstitial water chloride concentration and hydrogen and oxygen isotopes exist in very few locations. One of the primary limitations to the recovery of these depth profiles is that traditional interstitial water sampling requires 5–10 cm whole rounds of the sediment core, which has the potential to interfere with stratigraphic continuity. The Rhizon sampler, a nondestructive tool developed for terrestrial sediment interstitial water extraction, has been proposed for efficient and nondestructive sampling of ocean sediment pore waters. However, there exists little documentation on the reliability and performance of Rhizon samplers in deep ocean sediments, particularly in regard to their effect on chloride concentration and oxygen and hydrogen isotopic measurements. We perform an intercomparison of chloride concentration and oxygen and hydrogen isotopic composition in samples taken using traditional squeezing versus those taken with Rhizon samplers. We find that samples taken with Rhizons have positive biases in both chloride concentration and stable isotopic ratios relative to those taken by squeezing water from sediments in a hydraulic press. The measured offsets between Rhizon and squeeze samples are consistent with a combination of absorption by and diffusive fractionation through the hydrophilic membrane of the Rhizon sampler. These results suggest caution is needed when using Rhizons for sampling interstitial waters in any research of processes that leave a small signal-to-noise ratio in dissolved concentrations or isotope ratios

    The impact of abrupt deglacial climate variability on productivity and upwelling on the southwestern Iberian margin

    Get PDF
    This study combines high-resolution records of nannofossil abundances, oxygen and carbon stable isotopes, core scanning X-ray fluorescence (XRF), and ice rafted debris (IRD) to assess the paleoceanographic changes that occurred during the last deglaciation on the SW Iberian Margin. Our results reveal parallel centennial-scale oscillations in coccolithophore productivity, nutricline depth and upwelling phenomena not previously observed, explained by means of arrival of iceberg-melting waters, iceberg-induced turbulent conditions, SST changes and riverine discharges. On millennial time-scales, higher primary productivity (PP), shallower nutricline, and upwelling occurrence/invigoration are observed for the Last Glacial Maximum (LGM) and Bølling-Allerød (B/A). The opposite scenario (i.e., lower productivity, deeper nutricline and upwelling weakening/absence) is linked to cold spells such as Heinrich Stadials 2 and 1 (HS2 and HS1) and the Younger Dryas (YD). Such paleoproductivity variations are attributed to latitudinal migrations of the thermal fronts associated with oceanic gyres in the North Atlantic, in parallel to oscillations in the strength of the Atlantic Meridional Overturning Circulation (AMOC). Moderate-to-high PP during the Holocene is ascribed to the development of the modern seasonal surface hydrography, with a more persistent Iberian Poleward Current (IPC) and seasonal wind-induced upwelling
    • …
    corecore