98 research outputs found
The Cracker Patch Choice: An Analysis of Post Hoc Security Techniques
It has long been known that security is easiest to achieve when it is designed in from the start. Unfortunately, it has also become evident that systems built with security as a priority are rarely selected for wide spread deployment, because most consumers choose features, convenience, and performance over security. Thus security officers are often denied the option of choosing a truly secure solution, and instead must choose among a variety of post hoc security adaptations. We classify security enhancing methods, and compare and contrast these methods in terms of their effectiveness vs. cost of deployment. Our analysis provides practitioners with a guide for when to develop and deploy various kinds of post hoc security adaptations
Recommended from our members
Deep learning networks find unique mammographic differences in previous negative mammograms between interval and screen-detected cancers: a case-case study.
BackgroundTo determine if mammographic features from deep learning networks can be applied in breast cancer to identify groups at interval invasive cancer risk due to masking beyond using traditional breast density measures.MethodsFull-field digital screening mammograms acquired in our clinics between 2006 and 2015 were reviewed. Transfer learning of a deep learning network with weights initialized from ImageNet was performed to classify mammograms that were followed by an invasive interval or screen-detected cancer within 12 months of the mammogram. Hyperparameter optimization was performed and the network was visualized through saliency maps. Prediction loss and accuracy were calculated using this deep learning network. Receiver operating characteristic (ROC) curves and area under the curve (AUC) values were generated with the outcome of interval cancer using the deep learning network and compared to predictions from conditional logistic regression with errors quantified through contingency tables.ResultsPre-cancer mammograms of 182 interval and 173 screen-detected cancers were split into training/test cases at an 80/20 ratio. Using Breast Imaging-Reporting and Data System (BI-RADS) density alone, the ability to correctly classify interval cancers was moderate (AUC = 0.65). The optimized deep learning model achieved an AUC of 0.82. Contingency table analysis showed the network was correctly classifying 75.2% of the mammograms and that incorrect classifications were slightly more common for the interval cancer mammograms. Saliency maps of each cancer case found that local information could highly drive classification of cases more than global image information.ConclusionsPre-cancerous mammograms contain imaging information beyond breast density that can be identified with deep learning networks to predict the probability of breast cancer detection
Face-to-Face Compared With Online Collected Accounts of Health and Illness Experiences: A Scoping Review.
Advocates of online alternatives to face-to-face interviewing suggest online approaches save money and time, whereas others have raised concerns about the quality and content of the resulting data. These issues affect researchers designing and costing their studies and application reviewers and research funders. We conducted a scoping review of English language articles describing the range of online alternative approaches. Furthermore, we systematically identified studies directly comparing online alternatives with face-to-face approaches. Synthesis of these 11 articles (565 participants) suggests that online alternatives should not be viewed as a straightforward replacement for face-to-face, a particularly important finding given the rapid communication changes occurring in the COVID-19 pandemic. When applied with consideration of the evolving evidence on their strengths and weaknesses, online methods may increase the likelihood of obtaining the desired sample, but responses are shorter, less contextual information is obtained, and relational satisfaction and consensus development are lower
StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks
This paper presents a systematic solution to the persistent problem of buffer overflow attacks. Buffer overflow attacks gained notoriety in 1988 as part of the Morris Worm incident on the Internet. While it is fairly simple to fix individual buffer overflow vulnerabilities, buffer overflow attacks continue to this day. Hundreds of attacks have been discovered, and while most of the obvious vulnerabilities have now been patched, more sophisticated buffer overflow attacks continue to emerge.
We describe StackGuard: a simple compiler technique that virtually eliminates buffer overflow vulnerabilities with only modest performance penalties. Privileged programs that are recompiled with the StackGuard compiler extension no longer yield control to the attacker, but rather enter a fail-safe state.
These programs require no source code changes at all, and are binary-compatible with existing operating systems and libraries. We describe the compiler technique (a simple patch to gcc), as well as a set of variations on the technique that tradeoff between penetration resistance and performance. We present experimental results of both the penetration resistance and the performance impact of this technique
A Real-time Impedance-Based Screening Assay for Drug-Induced Vascular Leakage
Vascular leakage is a serious side effect of therapies based on monoclonal antibodies or cytokines which may lead to life-threatening situations. With the steady increase of new drug development programs for large molecules, there is an urgent need for reliable tools to assess this potential liability of new medicines in a rapid and cost-effective manner. Using human umbilical vein endothelial cells (HUVECs) as a model for endothelium, we established an impedance-based assay measuring the integrity of the endothelial cell monolayer in real time. We could demonstrate that the HUVEC monolayer in our system was a relevant model as cells expressed major junctional proteins known to be responsible for maintaining tightness as well as receptors targeted by molecules known to induce vascular leakage in vivo. We assessed the time-dependent loss of barrier function using impedance and confirmed that signals obtained corresponded well to those from standard transwell assays. We assayed a series of reference molecules which led to the expected change of barrier integrity. A nonspecific cytotoxic effect could be excluded by using human fibroblasts as a nonresponder cell line. Finally, we could show reversibility of vascular permeability induced by histamine, IL-1β, or TNF-α by coincubation with established antagonists, further demonstrating relevance of this new model. Taken together, our results suggest that impedance in combination with HUVECs as a specific model can be applied to assess clinically relevant vascular leakage on an in vitro leve
Notch-induced T cell development requires phosphoinositide-dependent kinase 1
Phosphoinositide-dependent kinase l (PDK1) phosphorylates and activates multiple AGC serine kinases, including protein kinase B (PKB), p70Ribosomal S6 kinase (S6K) and p90Ribosomal S6 kinase (RSK). PDK1 is required for thymocyte differentiation and proliferation, and herein, we explore the molecular basis for these essential functions of PDK1 in T lymphocyte development. A key finding is that PDK1 is required for the expression of key nutrient receptors in T cell progenitors: CD71 the transferrin receptor and CD98 a subunit of L-amino acid transporters. PDK1 is also essential for Notch-mediated trophic and proliferative responses in thymocytes. A PDK1 mutant PDK1 L155E, which supports activation of PKB but no other AGC kinases, can restore CD71 and CD98 expression in pre-T cells and restore thymocyte differentiation. However, PDK1 L155E is insufficient for thymocyte proliferation. The role of PDK1 in thymus development thus extends beyond its ability to regulate PKB. In addition, PDK1 phosphorylation of AGC kinases such as S6K and RSK is also necessary for thymocyte development
Recommended from our members
The Internal-External Security Nexus and EU Police/Rule of Law Missions in the Western Balkans
Common Security and Defence Policy (CSDP) police/rule of law missions in the Western Balkans are increasingly guided by externally imposed normative agendas that respond primarily to EU internal security needs rather than functional imperatives or local realities. In line with these needs, EU police reform efforts tend to prioritise effectiveness and crime fighting over longer- term democratic policing and good governance reforms. In practice this means that police reform initiatives are technocratically oriented, yet value ridden fitting EU security concerns and needs. As a result, the police reform process can be—and often is—disconnected from the political and socio-economic reforms necessary for long-term stability and sustainable peace. Police assistance in Bosnia and Herzegovina has been shaped by a determined albeit questionable focus on organised crime and corruption. The focus of EU police reform in Macedonia on primarily crime-fighting aspects of policing has compromised the functioning of the Macedonian police. Similarly, the politics of (non-)recognition of Kosovo's self-proclaimed independence and the intrusiveness of EULEX Kosovo's executive mandate contravene meeting local challenges
Comparison of three nudge interventions (priming, default option, and perceived variety) to promote vegetable consumption in a self-service buffet setting.
BACKGROUND: Dietary choices in out-of-home eating are key for individual as well as for public health. These dietary choices are caused by a wide array of determinants, one of which is automatic decision-making. Nudging is attracting considerable interest due to its understanding and application of heuristic biases among consumers. The aim of this study is to test and compare three nudges in promoting vegetable consumption among test persons in a food lab-based experiment. METHODS: The initial sample consisted of 88 participants recruited in Copenhagen, Denmark. Each study participant was randomly assigned to one of the three experiments: priming, default and perceived variety. The priming arm of the experiment consisted of creating a leafy environment with green plants and an odour of herbs. In the default arm of the experiment, the salad was pre-portioned into a bowl containing 200g of vegetables. The third experiment divided the pre-mixed salad into each of its components, to increase the visual variety of vegetables, yet not providing an actual increase in items. Each individual was partaking twice thus serving as her/his own control, randomly assigned to start with control or experimental setting. RESULTS: The default experiment successfully increased the energy intake from vegetables among the study participants (124 kcal vs. 90 kcal in control, p<0.01). Both the priming condition and perceived variety reduced the total energy intake among the study participants (169 kcal, p<0.01 and 124 kcal, p<0.01, respectively), mainly through a decrease in the meat-based meal component. CONCLUSIONS: Considerable progress has been made with regard to understanding the use of nudging in promoting a healthier meal composition, including increasing vegetable intake. This study suggests that the nature of a nudge-based intervention can have different effects, whether it is increasing intake of healthy components, or limiting intake of unhealthy meal components. This work has demonstrated that consumer behaviour can be influenced without restricting or providing incentives for behaviour change. The present findings have promising application to the foodservice sector
First-trimester ultrasound detection of fetal heart anomalies: systematic review and meta-analysis
Objectives: To determine the diagnostic accuracy of ultrasound at 11–14 weeks' gestation in the detection of fetal cardiac abnormalities and to evaluate factors that impact the detection rate. Methods: This was a systematic review of studies evaluating the diagnostic accuracy of ultrasound in the detection of fetal cardiac anomalies at 11–14 weeks' gestation, performed by two independent reviewers. An electronic search of four databases (MEDLINE, EMBASE, Web of Science Core Collection and The Cochrane Library) was conducted for studies published between January 1998 and July 2020. Prospective and retrospective studies evaluating pregnancies at any prior level of risk and in any healthcare setting were eligible for inclusion. The reference standard used was the detection of a cardiac abnormality on postnatal or postmortem examination. Data were extracted from the included studies to populate 2 × 2 tables. Meta-analysis was performed using a random-effects model in order to determine the performance of first-trimester ultrasound in the detection of major cardiac abnormalities overall and of individual types of cardiac abnormality. Data were analyzed separately for high-risk and non-high-risk populations. Preplanned secondary analyses were conducted in order to assess factors that may impact screening performance, including the imaging protocol used for cardiac assessment (including the use of color-flow Doppler), ultrasound modality, year of publication and the index of sonographer suspicion at the time of the scan. Risk of bias and quality assessment were undertaken for all included studies using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Results: The electronic search yielded 4108 citations. Following review of titles and abstracts, 223 publications underwent full-text review, of which 63 studies, reporting on 328 262 fetuses, were selected for inclusion in the meta-analysis. In the non-high-risk population (45 studies, 306 872 fetuses), 1445 major cardiac anomalies were identified (prevalence, 0.41% (95% CI, 0.39–0.43%)). Of these, 767 were detected on first-trimester ultrasound examination of the heart and 678 were not detected. First-trimester ultrasound had a pooled sensitivity of 55.80% (95% CI, 45.87–65.50%), specificity of 99.98% (95% CI, 99.97–99.99%) and positive predictive value of 94.85% (95% CI, 91.63–97.32%) in the non-high-risk population. The cases diagnosed in the first trimester represented 63.67% (95% CI, 54.35–72.49%) of all antenatally diagnosed major cardiac abnormalities in the non-high-risk population. In the high-risk population (18 studies, 21 390 fetuses), 480 major cardiac anomalies were identified (prevalence, 1.36% (95% CI, 1.20–1.52%)). Of these, 338 were detected on first-trimester ultrasound examination and 142 were not detected. First-trimester ultrasound had a pooled sensitivity of 67.74% (95% CI, 55.25–79.06%), specificity of 99.75% (95% CI, 99.47–99.92%) and positive predictive value of 94.22% (95% CI, 90.22–97.22%) in the high-risk population. The cases diagnosed in the first trimester represented 79.86% (95% CI, 69.89–88.25%) of all antenatally diagnosed major cardiac abnormalities in the high-risk population. The imaging protocol used for examination was found to have an important impact on screening performance in both populations (P < 0.0001), with a significantly higher detection rate observed in studies using at least one outflow-tract view or color-flow Doppler imaging (both P < 0.0001). Different types of cardiac anomaly were not equally amenable to detection on first-trimester ultrasound. Conclusions: First-trimester ultrasound examination of the fetal heart allows identification of over half of fetuses affected by major cardiac pathology. Future first-trimester screening programs should follow structured anatomical assessment protocols and consider the introduction of outflow-tract views and color-flow Doppler imaging, as this would improve detection rates of fetal cardiac pathology. © 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology
- …