104 research outputs found

    First observation of excited states in 173Hg

    Full text link
    The neutron-deficient nucleus 173Hg has been studied following fusion-evaporation reactions. The observation of gamma rays decaying from excited states are reported for the first time and a tentative level scheme is proposed. The proposed level scheme is discussed within the context of the systematics of neighbouring neutron-deficient Hg nuclei. In addition to the gamma-ray spectroscopy, the alpha decay of this nucleus has been measured yielding superior precision to earlier measurements.Comment: 5 pages, 4 figure

    Study of Intermediate-spin States of Y-98

    Get PDF
    The nuclear structure of the odd–odd nucleus 98Y has been re-investigated by observing prompt γ rays emitted following the proton-induced fission of a 238U target, using the JUROGAM-II multidetector array. New highspin decays have been observed and placed in the level schemes using triple coincidences. The experimental level energies and γ-decay patterns are compared to GICM and QPRM calculations, assuming that this neutronrich N = 59 isotone is spherical at low energies and prolate deformed at intermediate spins.Web of Science47391691

    Shape coexistence in Hg-178

    Get PDF
    Lifetime measurements of excited states in Hg-178 have been performed using the Rh-103(Kr-78, p2n) reaction at a beam energy of 354 MeV. The recoil-decay tagging (RDT) technique was applied to select the Hg-178 nuclei and associate the prompt gamma rays with the correlated characteristic ground-state alpha decay. Lifetimes of the four lowest yrast states of Hg-178 have been determined using the recoil distance Doppler-shift (RDDS) method. The experimental data are compared to theoretical predictions with focus on shape coexistence. The results confirm the shift of the deformed prolate structures to higher lying states but also indicate their increasing deformation with decreasing neutron number.Peer reviewe

    Identification of isomeric states in the N=73 neutron-deficient nuclei 132Pr and 130La

    Get PDF
    Decays from isomeric states in the neutron-deficient N=73 nuclei 132Pr and 130La have been observed for the first time. Half-lives of 486(70) ns and 2.46(4) μs were measured for two isomeric states in 132Pr. The decay from the 486 ns (8‑) isomer has been interpreted as a hindered E1 transition from the bandhead state of the excited πh11/2⊗νg7/2 configuration. The decay from the 2.5 μs (8+) isomer is consistent with the Weisskopf estimate for a low-energy E2 transition. An analogous 0.74(3) μs decay from an (8+) isomer in the neighboring isotone 130La has also been observed which similarly can be explained if the transition has E2 character. The Weisskopf interpretation for the isomer hindrance is strengthened by the lack of evidence for shape or K isomerism due to the γ-soft shapes predicted by configuration-constrained potential-energy-surface calculations

    In-beam spectroscopic study of 244Cf

    Get PDF
    The ground-state rotational band of the neutron-deficient californium (Z = 98) isotope 244Cf was identified for the first time and measured up to a tentative spin and parity of I = 20+. The observation of the rotational band indicates that the nucleus is deformed. The kinematic and dynamic moments of inertia were deduced from the measured gamma-ray transition energies. The behavior of the dynamic moment of inertia revealed an up-bend due to a possible alignment of coupled nucleons in high-j orbitals starting at a rotational frequency of about hw = 0.20 MeV. The results were compared with the systematic behavior of the even-even N = 146 isotones as well as with available theoretical calculations that have been performed for nuclei in the region

    In-beam spectroscopic study of Cf-244

    Get PDF
    The ground-state rotational band of the neutron-deficient californium (Z = 98) isotope 244Cf was identified for the first time and measured up to a tentative spin and parity of I I-pi = 20(+). The observation of the rotational band indicates that the nucleus is deformed. The kinematic and dynamic moments of inertia were deduced from the measured gamma-ray transition energies. The behavior of the dynamic moment of inertia revealed an up-bend due to a possible alignment of coupled nucleons in high-j orbitals starting at a rotational frequency of about (h) over bar (omega) = 0.20 MeV. The results were compared with the systematic behavior of the even-even N = 146 isotones as well as with available theoretical calculations that have been performed for nuclei in the region.Peer reviewe

    Collectivity in Pb-196,Pb-198 isotopes probed in Coulomb-excitation experiments at REX-ISOLDE

    Get PDF
    The neutron-deficient Pb-196,Pb-198 isotopes have been studied in Coulomb-excitation experiments employing the Miniball gamma-ray spectrometer and radioactive ion beams from the REX-ISOLDE post-accelerator at CERN. The reduced transition probabilities of the first excited 2(+) states in Pb-196 and Pb-198 nuclei have been measured for the first time. Values of B (E2) = 18.2(-4.1)(+4.8) W. u. and B (E2) = 13.1(-3.5)(+4.9) W. u., were obtained, respectively. The experiment sheds light on the development of collectivity when moving from the regime governed by the generalised seniority scheme to a region, where intruding structures, associated with different deformed shapes, start to come down in energy and approach the spherical ground state.Peer reviewe

    Nanosecond-Scale Proton Emission from Strongly Oblate-Deformed Lu-149

    Get PDF
    Using the fusion-evaporation reaction 96Ru(58Ni,p4n)149Lu and the MARA vacuum-mode recoil separator, a new proton-emitting isotope 149Lu has been identified. The measured decay Q value of 1920(20) keV is the highest measured for a ground-state proton decay, and it naturally leads to the shortest directly measured half-life of 450+170−100 ns for a ground-state proton emitter. The decay rate is consistent with lp=5 emission, suggesting a dominant πh11/2 component for the wave function of the proton-emitting state. Through nonadiabatic quasiparticle calculations it was concluded that 149Lu is the most oblate deformed proton emitter observed to date.peerReviewe

    Do nuclei go pear-shaped? Coulomb excitation of Rn-220 and Ra-224 at REX-ISOLDE (CERN)

    Get PDF
    Volume: 93The IS475 collaboration conducted Coulomb-excitation experiments with post-accelerated radioactive Rn-220 and Ra-224 beams at the REX-ISOLDE facility. The beam particles (E-beam: 2.83 MeV/u) were Coulomb excited using Ni-60, Cd-14, and Sn-120 scattering targets. De-excitation gamma-rays were detected employing the Miniball array and scattered particles were detected in a silicon detector. Exploiting the Coulomb-excitation code GOSIA for each nucleus several matrix elements could be obtained from the measured gamma-ray yields. The extracted matrix element allows for the conclusion that, while Rn-220 represents an octupole vibrational system, Ra-224 has already substantial octupole correlations in its ground state. This finding has i(m)plications for the search of CP-violating Schiff moments in the atomic systems of the adjacent odd-mass nuclei.Peer reviewe
    corecore