1,885 research outputs found
Randomized strategies and prospect theory in a dynamic context
When prospect theory (PT) is applied in a dynamic context, the probability weighting com- ponent brings new challenges. We study PT agents facing optimal timing decisions and consider the impact of allowing them to follow randomized strategies. In a continuous-time model of gam- bling and optimal stopping, Ebert and Strack (2015) show that a naive PT investor with access only to pure strategies never stops. We show that allowing randomization can signi cantly alter the predictions of their model, and can result in voluntary cessation of gambling
Water-Induced Reordering in Ultrathin Ionic Liquid Films
Water-induced reordering in ultrathin ionic liquid films has been observed using in situ X-ray photoelectron spectroscopy. An ultrathin layer of 1-butyl-3-methylimidazolium tetrafluoroborate ([C4C1Im][BF4]) was deposited on a rutile TiO2 (110) single crystal and exposed to water vapour at a relative humidity of ~70% in an in situ cell. Water was found to adsorb onto the ionic liquid surface, causing a reordering of the ions at the interface. Water initially remained trapped on the ionic liquid surface as the in situ cell was evacuated. This could have negative implications for supported ionic liquid phase catalysis, where reactants and products move in and out of an ionic liquid containing the catalyst. This insight into the behaviour at the water/ionic liquid interface provides a basis for understanding interfacial behaviour in more complex gas/ionic liquid systems
Culture shapes how we look at faces
Background: Face processing, amongst many basic visual skills, is thought to be invariant across all humans. From as early as 1965, studies of eye movements have consistently revealed a systematic triangular sequence of fixations over the eyes and the mouth, suggesting that faces elicit a universal, biologically-determined information extraction pattern. Methodology/Principal Findings: Here we monitored the eye movements of Western Caucasian and East Asian observers while they learned, recognized, and categorized by race Western Caucasian and East Asian faces. Western Caucasian observers reproduced a scattered triangular pattern of fixations for faces of both races and across tasks. Contrary to intuition, East Asian observers focused more on the central region of the face. Conclusions/Significance: These results demonstrate that face processing can no longer be considered as arising from a universal series of perceptual events. The strategy employed to extract visual information from faces differs across cultures
FindFoci: a focus detection algorithm with automated parameter training that closely matches human assignments, reduces human inconsistencies and increases speed of analysis
Accurate and reproducible quantification of the accumulation of proteins into foci in cells is essential for data interpretation and for biological inferences. To improve reproducibility, much emphasis has been placed on the preparation of samples, but less attention has been given to reporting and standardizing the quantification of foci. The current standard to quantitate foci in open-source software is to manually determine a range of parameters based on the outcome of one or a few representative images and then apply the parameter combination to the analysis of a larger dataset. Here, we demonstrate the power and utility of using machine learning to train a new algorithm (FindFoci) to determine optimal parameters. FindFoci closely matches human assignments and allows rapid automated exploration of parameter space. Thus, individuals can train the algorithm to mirror their own assignments and then automate focus counting using the same parameters across a large number of images. Using the training algorithm to match human assignments of foci, we demonstrate that applying an optimal parameter combination from a single image is not broadly applicable to analysis of other images scored by the same experimenter or by other experimenters. Our analysis thus reveals wide variation in human assignment of foci and their quantification. To overcome this, we developed training on multiple images, which reduces the inconsistency of using a single or a few images to set parameters for focus detection. FindFoci is provided as an open-source plugin for ImageJ
Human settlement of East Polynesia earlier, incremental, and coincident with prolonged South Pacific drought
The timing of human colonization of East Polynesia, a vast area lying between Hawai‘i, Rapa Nui, and New Zealand, is much debated and the underlying causes of this great migration have been enigmatic. Our study generates evidence for human dispersal into eastern Polynesia from islands to the west from around AD 900 and contemporaneous paleoclimate data from the likely source region. Lake cores from Atiu, Southern Cook Islands (SCIs) register evidence of pig and/or human occupation on a virgin landscape at this time, followed by changes in lake carbon around AD 1000 and significant anthropogenic disturbance from c. AD 1100. The broader paleoclimate context of these early voyages of exploration are derived from the Atiu lake core and complemented by additional lake cores from Samoa (directly west) and Vanuatu (southwest) and published hydroclimate proxies from the Society Islands (northeast) and Kiribati (north). Algal lipid and leaf wax biomarkers allow for comparisons of changing hydroclimate conditions across the region before, during, and after human arrival in the SCIs. The evidence indicates a prolonged drought in the likely western source region for these colonists, lasting c. 200 to 400 y, contemporaneous with the phasing of human dispersal into the Pacific. We propose that drying climate, coupled with documented social pressures and societal developments, instigated initial eastward exploration, resulting in SCI landfall(s) and return voyaging, with colonization a century or two later. This incremental settlement process likely involved the accumulation of critical maritime knowledge over several generations
Regional Histopathology and Prostate MRI Positivity: A Secondary Analysis of the PROMIS Trial
Background: The effects of regional histopathologic changes on prostate MRI scans have not been accurately quantified in men with an elevated prostate-specific antigen (PSA) level and no previous biopsy. /
Purpose: To assess how Gleason grade, maximum cancer core length (MCCL), inflammation, prostatic intraepithelial neoplasia (PIN), or atypical small acinar proliferation within a Barzell zone affects the odds of MRI visibility. /
Materials and Methods: In this secondary analysis of the Prostate MRI Imaging Study (PROMIS; May 2012 to November 2015), consecutive participants who underwent multiparametric MRI followed by a combined biopsy, including 5-mm transperineal mapping (TPM), were evaluated. TPM pathologic findings were reported at the whole-prostate level and for each of 20 Barzell zones per prostate. An expert panel blinded to the pathologic findings reviewed MRI scans and declared which Barzell areas spanned Likert score 3–5 lesions. The relationship of Gleason grade and MCCL to zonal MRI outcome (visible vs nonvisible) was assessed using generalized linear mixed-effects models with random intercepts for individual participants. Inflammation, PIN, and atypical small acinar proliferation were similarly assessed in men who had negative TPM results. /
Results: Overall, 161 men (median age, 62 years [IQR, 11 years]) were evaluated and 3179 Barzell zones were assigned MRI status. Compared with benign areas, the odds of MRI visibility were higher when a zone contained cancer with a Gleason score of 3+4 (odds ratio [OR], 3.1; 95% CI: 1.9, 4.9; P < .001) or Gleason score greater than or equal to 4+3 (OR, 8.7; 95% CI: 4.5, 17.0; P < .001). MCCL also determined visibility (OR, 1.24 per millimeter increase; 95% CI: 1.15, 1.33; P < .001), but odds were lower with each prostate volume doubling (OR, 0.7; 95% CI: 0.5, 0.9). In men who were TPM-negative, the presence of PIN increased the odds of zonal visibility (OR, 3.7; 95% CI: 1.5, 9.1; P = .004). /
Conclusion: An incremental relationship between cancer burden and prostate MRI visibility was observed. Prostatic intraepithelial neoplasia contributed to false-positive MRI findings
Correction: Clinical applications of infrared and Raman spectroscopy: state of play and future challenges
Correction for 'Clinical applications of infrared and Raman spectroscopy: state of play and future challenges' by Matthew J. Baker, et al., Analyst, 2018, DOI: 10.1039/c7an01871a
Clinical applications of infrared and Raman spectroscopy: state of play and future challenges
Vibrational spectroscopies, based on infrared absorption and/or Raman scattering provide a detailed fingerprint of a material, based on the chemical content. Diagnostic and prognostic tools based on these technologies have the potential to revolutionise our clinical systems leading to improved patient outcome, more efficient public services and significant economic savings. However, despite these strong drivers, there are many fundamental scientific and technological challenges which have limited the implementation of this technology in the clinical arena, although recent years have seen significant progress in addressing these challenges. This review examines (i) the state of the art of clinical applications of infrared absorption and Raman spectroscopy, and (ii) the outstanding challenges, and progress towards translation, highlighting specific examples in the areas of in vivo, ex vivo and in vitro applications. In addition, the requirements of instrumentation suitable for use in the clinic, strategies for pre-processing and statistical analysis in clinical spectroscopy and data sharing protocols, will be discussed. Emerging consensus recommendations are presented, and the future perspectives of the field are assessed, particularly in the context of national and international collaborative research initiatives, such as the UK EPSRC Clinical Infrared and Raman Spectroscopy Network, the EU COST Action Raman4Clinics, and the International Society for Clinical Spectroscopy
Parallax of OGLE-2018-BLG-0596: A Low-mass-ratio Planet around an M-dwarf
We report the discovery of a microlensing planet
OGLE-2018-BLG-0596Lb, with preferred planet-host mass ratio . The planetary signal, which is characterized by a short "bump" on the rising side of the lensing light curve, was densely
covered by ground-based surveys. We find that the signal can be explained by a
bright source that fully envelops the planetary caustic, i.e., a "Hollywood"
geometry. Combined with the source proper motion measured from , the
satellite parallax measurement makes it possible to precisely
constrain the lens physical parameters. The preferred solution, in which the
planet perturbs the minor image due to lensing by the host, yields a
Uranus-mass planet with a mass of orbiting
a mid M-dwarf with a mass of . There is also
a second possible solution that is substantially disfavored but cannot be ruled
out, for which the planet perturbs the major image. The latter solution yields
and . By
combining the microlensing and data together with a Galactic model, we
find in either case that the lens lies on the near side of the Galactic bulge
at a distance . Future adaptive optics
observations may decisively resolve the major image/minor image degeneracy.Comment: 34 pages, 8 figures, Submitted to AAS journa
- …