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The timing of human colonization of East Polynesia, a vast area
lying between Hawai‘i, Rapa Nui, and New Zealand, is much de-
bated and the underlying causes of this great migration have been
enigmatic. Our study generates evidence for human dispersal into
eastern Polynesia from islands to the west from around AD 900
and contemporaneous paleoclimate data from the likely source
region. Lake cores from Atiu, Southern Cook Islands (SCIs) register
evidence of pig and/or human occupation on a virgin landscape at
this time, followed by changes in lake carbon around AD 1000 and
significant anthropogenic disturbance from c. AD 1100. The
broader paleoclimate context of these early voyages of explora-
tion are derived from the Atiu lake core and complemented by
additional lake cores from Samoa (directly west) and Vanuatu
(southwest) and published hydroclimate proxies from the Society
Islands (northeast) and Kiribati (north). Algal lipid and leaf wax
biomarkers allow for comparisons of changing hydroclimate con-
ditions across the region before, during, and after human arrival in
the SCIs. The evidence indicates a prolonged drought in the likely
western source region for these colonists, lasting c. 200 to 400 y,
contemporaneous with the phasing of human dispersal into the
Pacific. We propose that drying climate, coupled with documented
social pressures and societal developments, instigated initial east-
ward exploration, resulting in SCI landfall(s) and return voyaging,
with colonization a century or two later. This incremental settle-
ment process likely involved the accumulation of critical maritime
knowledge over several generations.

Polynesian voyaging | East Polynesian colonization | biomarkers |
drought | palaeoclimate

Colonization of the vast eastern Pacific, with its few and far-
flung archipelagos, was a remarkable achievement in human

history. Yet the timing, character, and drivers of this accom-
plishment remain poorly understood. Specifically, the final phase
of human dispersal occurred nearly 2 millennia after coloniza-
tion of West Polynesia (Tonga and Samoa), raising questions
about why voyaging was apparently discontinuous and why it
resumed after such a prolonged standstill.
Recent chronometric studies, particularly those using short-lived

materials (SLMs; ≤10 y) with little in-built age (1, 2), along with
U-Th dating (3), have gone some way toward resolving the chro-
nology of human settlement in East Polynesia, a region distin-
guished by a high degree of cultural, biological, and linguistic
similarity (4). High-precision chronologies are now available for
several central archipelagos, including the Cook (3, 5), Society (6),

and Marquesas islands (7), along with Mangareva (8), unambiguously
placing Polynesians in the central East Polynesian core by the 12th
century AD.
Less attention has been directed to the drivers of East Polyne-

sian exploration and eventual settlement. Some stress the im-
portance of demographic processes and resource deterioration
(anthropogenic or otherwise) (9) as “push” factors, but evidence
from West Polynesian archaeological sites has been equivocal.
Others have shown that wind patterns and the 800- to 1,200-km
water gap between Samoa–Tonga and the Southern Cook Islands
(SCIs) constituted a critical navigational threshold (10). This in
combination with greater interarchipelago distances, smaller island
sizes, and arcs of landfall shaped by novel wind conditions may

Significance

We combine indicators from lake sediments with archaeologi-
cal records that identify an earlier and incremental arrival of
humans in East Polynesia than indicated by current models. We
use lake sediments to reconstruct a quantitative, multiproxy
hydroclimate sequences from Vanuatu, Samoa, and the Southern
Cook Islands and combine these with published data to show
that the timing of human migration into East Polynesia co-
incided with a prolonged drought. We postulate this regional
drought was a significant contributory factor in eastward ex-
ploration and subsequent colonization of the Southern Cook
Islands and beyond. The return of wetter conditions in East
Polynesia after c. AD 1150 supported subsequent colonization
of other central islands and, eventually, migration into far
eastern and South Polynesia.
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have required watercraft improvements and new voyaging strate-
gies that took time to develop (10). Pulses of Pacific colonization
may also be linked to intensified periods of the El Niño Southern
Oscillation (ENSO) (11). Problematically, assessing the influence
of climate on Polynesian migrations has been hampered by the
short length (<600 y) of Pacific paleoclimate proxy records and/or
their absence from the areas that lie at critical migration thresholds.
We report multiproxy analyses from lake sediment archives

aimed at understanding the paleoclimatic context and timing of
the earliest human excursions into the East Polynesian realm. The
timescales for our sediment records were produced by Bayesian
age–depth modeling of radiometric ages (210Pb and accelerator
mass spectrometry [AMS] 14C), with greater weight attributed to
14C ages obtained for SLMs, mainly terrestrial plant leaf macro-
fossils. Our records derive from three archipelagos that comprise a
west-to-east transect along the southern boundary of the South
Pacific Convergence Zone (SPCZ), a major Pacific Ocean feature
(Fig. 1): Vanuatu (Efate), Samoa (‘Upolu), and the SCIs (Atiu).
Vanuatu is particularly sensitive to movement of the SPCZ (12),
while Samoa is identified by voyaging simulations (13), material
culture, and biological evidence (4) as a likely departure point for
East Polynesian explorers. Temporally relevant paleoclimate re-
cords from these two archipelagos offer insights into conditions
surrounding eastward Polynesian expansion. The Southern Cook
Islands, the most proximate archipelago to the potential West
Polynesian homeland, have long been recognized as a likely
gateway archipelago for East Polynesian colonists (4, 10, 14).
More generally, the considerable time depth of our three sediment
archives (Vanuatu: c. 1,750 y; Samoa: c. 10,600 y; Cook Islands: c.
6,550 y) inform on conditions before, during, and after human
dispersal into the cultural region of East Polynesia.

Study Sites
Lake Emoatul (17°43′57.48″S, 168°24′53.58″E), Efate Island,
Vanuatu is a closed, 0.3-km2 freshwater body at an altitude of
119 metres above sea level (m.a.s.l.) within a relatively small catch-
ment (0.98 km2) surrounded by moist montane forest with limited
subsistence gardening and arboriculture. The lake is situated on a
Pleistocene raised coral reef dated to c. 120,000 B.P. The lake has a
maximum depth of 7.1 m and is meromictic with a chemocline at 6 m
resulting in a suboxic (dissolved oxygen 5.0% saturation; sat) hypo-
limnion. Our 3.4-m sediment core was characterized by laminated
gyttja throughout. Final Bayesian age–depth model uncertainties
around the potential period of initial East Polynesian colonization (c.
900 to 1200) were ±85 y (2σ) (SI Appendix, Fig. S2 and Table S1).
The resultant age–depth curve indicates sediment accumulation
averages of 6 y·cm−1.
Lake Lanoto‘o (13°54′37.73″S, 171°49′39.72″W), ‘Upolu Island,

Samoa is a closed freshwater body within an extinct volcanic crater
at 760 m.a.s.l. The crater dates to around 1 to 0.1 million y old and
has deeply weathered, silty-loam, red lateritic soils of 2 to 6% or-
ganic carbon content (15, 16). The freshwater lake is 0.11 km2 in
area with a maximum depth of 17 m and a closed catchment area of
0.23 km2. The lake is surrounded by moist montane forest with a
relatively undisturbed cover ofDysoxylum huntii (17). Lake Lanoto‘o
is meromictic with a chemocline at a 10-m depth resulting in a
suboxic (dissolved oxygen 10% sat) hypolimnion. The sediment se-
quence is gyttja throughout, with some laminations—the main color
variations resulting from terrigenous in-wash (18). The resulting
Bayesian age–depth model provides 2σ uncertainties of ±59 y
around the period of potential migration into East Polynesia (c. AD
900 to 1200) (SI Appendix, Fig. S2 and Table S1). The resultant age–
depth curve indicates sediment accumulation averages of 30 y·cm−1.
Lake Te Roto (20°0′34.99″S, 158°7′24.83″W), Atiu Island,

Southern Cook Islands is a 26.9-km2 island composed of a highly
weathered volcanic core and an encircling raised limestone rim
or makatea of 3- to 6-m height on the seaside (17). The small
(0.03-km2) brackish lake (surface water salinity 6 ppt [parts per
thousand]; bottom salinity 16 ppt) of Te Roto lies at an elevation
of 0.9 m.a.s.l. and is <1 km from the coast. The lake is semiopen
with a narrow exit tunnel through the makatea that periodically
connects to the ocean (17). Some 96% of the 0.3-km2 lake
catchment drains an eroded volcanic cone. The lake is 8.4 m
deep with a chemocline at a 3-m depth, resulting in an anoxic
(dissolved oxygen 10% sat) hypolimnion (18). A 7.8-m core
produced a sequence consisting of laminated gyttja throughout.
These individual laminae most likely represent seasonal sedi-
mentation (18) and allow for a relative chronology of environ-
mental change (SI Appendix, Fig. S1). Bayesian age–depth model
uncertainties associated with the period of likely anthropogenic
disturbance are ±140 y. Sediment accumulation rates are esti-
mated at 9 y·cm−1. The sources of carbon to the lake based on
bulk sediment organic C/N and δ13C data are dominated by soil
and terrestrial vegetation (18). The associated age–depth model
is constrained by eight AMS 14C results across the depth interval
of 263 to 182 cm, but there is scatter arising from measurements
for bulk organic materials (SI Appendix, Fig. S2). BACON, the R
software used for Bayesian age–depth modeling, reduces the
effects of outlying dates because the ages are modeled using a
Student’s t distribution with wide tails (19). Given the greater
confidence generated by 14C dating SLMs, these ages were
assigned more narrow Gaussian error distributions reflecting
their greater reliability.
Previous coring at Lake Te Roto suggested initial human ac-

tivities in the catchment as early as c. AD 590 to 765 (2σ) (17),
but this single early date has been controversial. No early set-
tlement sites have been identified on Atiu Island but archaeo-
logical work has been limited (SI Appendix). The lake is inshore
from the traditional Vai Piake landing, with other nearby landing
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sites to the north. The Lake Te Roto core most directly records
human activity on Atiu but given the close interisland distances
(<250 km) is likely to reflect human arrival and dispersal across
the SCIs as a whole.

Anthropogenic Signatures in Lake Te Roto, Atiu, Southern
Cook Islands
With more than 6,500 y of near-continuous sediment deposition,
the Lake Te Roto core provides an excellent record of natural
variability in the prehuman period. Throughout much of the core
there is little variation but four exceptional intervals (Table 1)
during the last 2,000 y are focused on here (Fig. 2) (17). To test for
a human presence, we analyzed sterol biomarkers that are com-
monly associated with mammalian fecal remains (20, 21) from
intervals bracketing changes that were suggestive of anthropogenic
disturbances (e.g., C/N ratios, macrocharcoal, Titanium normal-
ized by incoherence scatter [Ti/Inc.], etc.). Fecal sterols were first
identified at 215 cm. The age measurements obtained for SLMs
drive the Bayesian modeling and constrain the depth interval for
initial fecal markers to AD 800 to 1004 (2σ). These unequivocal
indicators of mammalian feces (pig and/or human) predate
changes in lake productivity and major catchment disturbance,
suggesting early humans and/or pigs associated with human arrival
visited this significant water source but had negligible impacts on
the immediate lake environment.
Seven other proxies recovered from distinct lamina between 215

and 188.5 cm inform on subsequent changes in lake productivity
and the onset of consequential catchment disturbances (Fig. 2 and
Table 1). These include C/N ratios and δ13C of organic carbon,
which indicate the organic matter is from a terrestrial carbon
source, and total organic carbon, which is a measure of lake
productivity (22, 23). Consequential changes in these three proxies
are bracketed by 14C analysis of SLMs from 215 cm (c. AD 686 to

961, 2σ) and a second sample from 182.5 cm (c. AD 1047 to 1274,
2σ). The BACON Bayesian model narrows this time interval to c.
AD 1004 (885 to 1123).
Other analyses include determination of micro- and macro-

charcoal [regional and local burning, respectively (24)], titanium
(Ti/Inc.), and low-frequency magnetic susceptibility (XLF), the
latter two measures of soil erosion (25, 26). From a 196.5-cm
depth, after c. AD 1106 (1002 to 1210) (BACON), changes are
apparent in all seven proxies. Macrocharcoal density reaches a
maximal peak, along with soil erosion proxies indicative of in-
creased catchment disturbance. At the same time, leaf wax bio-
marker hydrogen isotopes identify this as a period of enhanced
precipitation in the SCIs (Fig. 3D), conditions that would have
favored agricultural investments and increased surface runoff.
Notably, this time interval also coincides with direct archaeo-
logical evidence for human settlements throughout the SCIs (SI
Appendix, Fig. S2).
Although the absolute chronology of three proxies cannot be

unambiguously determined on the available AMS 14C data, three
phases of disturbance can be identified on stratigraphic grounds
and are assigned by the Bayesian analysis to between the 9th and
early 13th centuries AD (Table 1, phases 2 to 4). Notably, values
for all of these indicators, except microcharcoal, are higher in
phases 2 to 4 than at any point in time in the c. 6,550-y contin-
uous record (18). This, in conjunction with the human and/or pig
fecal sterol evidence, leaves little doubt that phases 2 to 4 reflect
human activity on the island.
Changes are also apparent around the 6th century AD (phase 1)

but could reflect nonhuman processes. There is a peak in micro-
charcoal, accompanied by a small increase in macrocharcoal and a
spike in C/N ratios between 228 and 216 cm (Fig. 2 and Table 1).
Although this could derive from human activity on Atiu Island
(17), fecal sterols are lacking and there is no direct archaeological

Table 1. Summary of Lake Te Roto (Atiu) proxy sequence (settlement phases after ref. 35)

Environmental
phase

Measured
proxy

Inferred
variable

Sediment
depth, cm

Bayesian modeled
2σ AD age

range (midpoint)

Settlement
phase

(age estimate)
Hydroclimate

Samoa/Atiu SCIs

Phase 1: regional
disturbance

Microcharcoal Regional
burning

228 546 to
624 (585)

Natural variability
or early discovery?
(c. AD 600)

Wetter/wet

Phase 2: exotic
species arrive

Fecal sterols Presence of
mammalian
(pig/human) feces

215 800 to
966 (883)

Discovery
(c. AD 900)

Drying/dry

Fecal sterols Presence of mammalian
(pig/human) feces

212 828
to 1004 (930)

Phase 3: changes in
lake productivity
and carbon sources

C/N Lake carbon
source

207 885 to
1123 (1004)

Colonization
(c. AD 1000)

Dry/wetting

% total
organic carbon

Lake
productivity

207

δ13C Lake carbon
source

207

Phase 4: major
catchment
disturbances

Microcharcoal Regional
burning

196.5 1002 to
1210 (1106)

Establishment
(c. AD 1125)

Wetting/wet

Titanium (Ti/Inc.) Soil erosion 196 1007 to
1219 (1113)

Low-frequency
magnetic susceptibility
(χLF)

Soil erosion 195 1010 to
1228 (1119)

Macrocharcoal Local burning 188.5 1094 to
1214 (1154)

BACON 2.2 (19) was used to construct the Bayesian age model using 14C samples from stratigraphic depths at which proxies exceed background values or
show a rapid rate of change (Fig. 2). Conventional 14C ages calibrated using ShCal13 (51). Hydroclimate in Samoa and Atiu (SCIs) is inferred from proxy climate
data (lipid biomarkers and Ti/Inc.) from Lake Lanoto‘o and Lake Te Roto (Figs. 3 and 4). Drought in Samoa coincides with discovery (phase 2) and colonization
(phase 3) on Atiu. Local hydroclimate on Atiu became increasingly wet toward the end of phase 3 (colonization) and leading into phase 4 (establishment).
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evidence to support this interpretation. Given that microcharcoal
can travel considerable distances, these changes could be indicative
of burning elsewhere in the archipelago, or even farther afield.
Comparing the Lake Te Roto results with archaeological re-

cords from other Southern Cook Islands, the phase 2 fecal sterol
records potentially predate archaeological evidence of human
occupation by as much as 200 to 300 y (SI Appendix, Fig. S4).
Phase 3 changes in C/N, total organic carbon, and δ13C point to
more consequential human activities in the Lake Te Roto
catchment, which predate secure archaeological indicators from
Atiu Island. However, at Tangatatau Rockshelter (Mangaia
Island), a chronological sequence places initial human visitation
possibly as early as the 11th to 12th centuries based on U-Th
dating of coral tools (AD 1011 ± 5.8 and 1167 ± 12) from earlier
strata (3, 4). A single result from Aitutaki Island to the north
indicates late 11th-century human activity (5). As a whole, the
available archaeological records are consistent with the small-
scale, low-impact human activities suggested by the Lake Te
Roto phase 3 proxies and fully supportive of the phase 4 inter-
pretations (SI Appendix, Fig. S4).

The Climatic Context of Eastward Dispersals
The three lake archives provide a regional perspective on climate
variability over the last 2,000 y. Particular attention is drawn to
the period AD 900 to 1200, a likely window of East Polynesian
colonization (Fig. 3). The Vanuatu precipitation record derived
from algal lipid hydrogen isotope (δ2Hdinosterol) measurements
(Materials and Methods) identifies the period between c. AD
0 and 900 as the wettest in the total lake sediment sequence
(average 6.3 ± 2.2 [average uncertainty] mm/d). Thereafter,
conditions become increasingly dry over the period between AD
1047 and 1222 (2σ), producing the driest values (average 3.9 ±
1.8 [average uncertainty] mm/d) in the entire 2,000-y period;
notably, contemporary estimated values for the period 1976 to
2017 average 4.9 ± 1.9 (average uncertainty) mm/d. The Samoan
δ2Hdinosterol record is similar to Vanuatu, but variability is less
pronounced given its location within the main axis of the SPCZ.
The period between c. AD 0 and 700 has an average pre-
cipitation of 5.0 ± 2.2 (average uncertainty) mm/d. Thereafter,
two particularly dry periods occur: one estimated at 3.8 ± 2.0
mm/d at c. AD 700 (AD 528 to 872, 2σ), and a second more
precisely defined dry interval estimated at 3.7 ± 1.7 mm/d, which
occurred around AD 1000 (AD 892 to 1036, 2σ) (Fig. 3B). By
comparison, contemporary estimated values for the period 1963
to 2013 average 5.9 ± 2.2 (average uncertainty) mm/d. In the
Lake Te Roto record, the driest period in the last 2,000 y as
indicated by the leaf wax record (Fig. 3D) occurred around c. AD
990 (AD 923 to 1058, 2σ).
The period of drier hydroclimate coincident with the arrival of

humans in the SCIs is identified in all three lake sediment cores.
The reductions in precipitation are well below contemporary
averages and are of the same magnitude as contemporary ENSO
precipitation anomalies (La Niña−El Niño), which result in
drought conditions on Vanuatu, Samoa, and Atiu. We posit that
these marked precipitation anomalies were of sufficient magni-
tude as to adversely impact agricultural productivity and fresh-
water resources relative to subsequent and previous centuries,
and are indicative of a prolonged drought in this region of
the Pacific.
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Fig. 2. Proxy indicators from Lake Te Roto for the presence of humans on
the Atiu Island landscape. Yellow bars are the best estimates of human
impacts based on either the first increase in values above background levels
or rapid changes in proxy values (e.g., %TOC). Fecal sterol values (A) prior to
800 AD are all lower than the 0.20 threshold for confident identification of
our target species (pigs and humans) (21). Carbon source (B and C) and total
organic carbon (D) change around AD 1000 as inorganic soil in-wash (F, Ti/
Inc.; G, χLF) increases following disturbance of the catchment soils, pre-
sumably due to local burning and clearance (H). Microcharcoal (E) shows a
large peak before all other indicators, which we interpret as natural burning

given the absence of, or minor changes in, all other proxies at that time. The
gray region represents 2 SDs around the age model weighted mean, com-
bined with 1 SD in measured proxy values. Brief interpretations of what each
proxy represents are shown for clarity (Right).
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Discussion
Our sediment core results from the Southern Cook Islands
provide evidence of anthropogenic activities from time intervals
that predate archaeological evidence from across the archipelago.
The lake’s laminated gyttja allows for the identification of four se-
quential phases of unprecedented environmental disturbance, while
14C analyses provide an absolute chronology of disturbances be-
tween 800 and 1225 AD: regional burning (possibly anthropogenic)
in the 6th century AD (phase 1); the arrival of exotic mammals
(humans and/or pigs) (phase 2: c. AD 900); changes in the lake’s
productivity and organic carbon sources roughly a century later
(phase 3: c. AD 1000); and major catchment disturbances within the
following century (phase 4: c. post AD 1100) (Table 1). These
empirically defined phases resonate with conceptual models of
island settlement, which differentiate between island discovery,
colonization, and establishment (10, 35). New islands may be lo-
cated during strategic exploratory voyages or as accidental landfalls,
and in turn become localities of resource extraction (e.g., birds,
marine resources) and/or waystations from which to conduct further
exploration. Given the distances between settled islands in the west
and those of the vast East Polynesian region, provisioning stations
(especially those with fresh water) may have been crucial in the
eastward expansion process. The Lake Te Roto SCI record (Fig. 2
and Table 1) suggests populations from West Polynesia began ex-
ploratory probes along the margins of East Polynesia into the SCIs
and possibly other proximate archipelagos such as the Societies, well
before full-fledged colonizing expeditions were launched.
More modest changes in lake productivity followed in the next

1 to 2 centuries, potentially signaling the arrival of colonizing
parties. Archaeologically, 11th-century colonists are suggested
on the neighboring island of Mangaia, where Polynesian rats
(Rattus exulans) and coral tools date to this interval (4). By the
12th to 13th centuries, major lake catchment disturbances on
Atiu are indicated, including vegetation burning and soil erosion.
Both suggest forest clearance and probably agricultural activities—
processes that are consistent with established, permanent, and
larger settlements. These latter activities are archaeologically well-
demonstrated on islands to the north (Aitutaki) and south
(Mangaia) of Atiu (SI Appendix, Fig. S2), indicating human pop-
ulations had dispersed across the SCI chain by this time.
The Lake Te Roto findings also resonate with reconstructions

of synoptic wind patterns and Polynesian voyaging to the region’s
margins (Rapa Nui, New Zealand) (36). Goodwin and colleagues
(36) identify key sailing windows, when “the centennial mean
climate pattern resembles a shift to the Central Pacific (Modoki)
El Niño pattern, with . . . anomalous westerly wind fields (trade
wind reversals) over the Central Pacific.” Relevant to the Te Roto
findings, they identify sailing windows between West Polynesia
and the SCIs around AD 860 to 900, when mammalian (pig/hu-
man) fecal sterols make their initial appearance. Explorations of
the kind suggested here may have been planned to take advantage
of such seasonal and interannual wind shifts, as these would have
facilitated easy and safe homeward voyages (10). A second key
sailing window is identified at c. AD 1040 to 1060, coinciding with
increases in lake productivity and phase 3 colonization (Table 1).
The lake sediment archives from our three study sites, in com-

bination with other published records, allow for the reconstruction
of paleoclimatic conditions over the last 2 millennia and provide
context for the trends observed at Lake Te Roto. The initial phase
of East Polynesian exploration (Fig. 3) as indicated by the SCI
records (c. AD 800 to 1000) is characterized by an abrupt re-
duction in zonal sea surface temperature (SST) gradients and
cooling of the West Pacific Warm Pool (Fig. 3F) (33). The central
Pacific Intertropical Convergence Zone (ITCZ) moves north c.
AD 900 (30), while far eastern Pacific El Niño frequency and
magnitude remain low (Fig. 3E) (31). Model predictions support a
northwest movement, contraction, and weakening of the SPCZ as
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Fig. 3. Reconstructed precipitation (rates and wet:dry trends) for west-to-
east Pacific Islands in A to D (C, Society Islands data are based on ref. 27). In A
and B, pecked lines denote uncertainty bounds around estimated pre-
cipitation, while gray bars with a black horizontal line (Right) show mean ±
uncertainty for contemporary satellite-based [GPCP (28)] precipitation. The
solid and dashed arrows in B represent periods of societal change in Samoa
(29). Movement of the ITCZ (30) and ENSO frequency (31) are shown in E.
Reconstructed SSTs in the West Pacific Warm Pool (WPWP) (32) and Pacific
zonal SST gradients (33) are in F. Archaeological dates for the Southern Cook
and Society islands are shown as horizontal black bars (C and D) while dates
for Atiu (this study) are shown as a graded gold column from arrival c. AD
800 to 1000 through established settlement from c. AD 1125. The gray col-
umn denotes the later period of Polynesian expansion into remote eastern
Polynesia including Rapa Nui c. AD 1150 to 1300 (34).
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the SST zonal gradient and absolute SSTs decrease (37)—condi-
tions consistent with the prolonged regional drought suggested by
our core proxies (Fig. 4A).
From AD 1000 to 1150, a rapid increase in SSTs and

strengthening of zonal SST gradient (Fig. 3F) correspond to
strengthening of the eastern SPCZ, enhanced by moisture
transfer as the southeast Pacific high strengthens, as indicated by
drought on Rapa Nui (34). In the Atiu sediment record (Fig. 3D)
and also in the Society Islands (27) (Fig. 3C), this is evidenced by
concomitant precipitation increases. At the same time, condi-
tions remained drier on Samoa and Vanuatu, reaching a 2,000-y
minimum c. AD 1050 to 1100 (Fig. 3 A and B), consistent with a
generally more northerly location of the main SPCZ axis. At this
point in time, precipitation values in Samoa were reduced by
38% below contemporary values, presumably stressing critical
food and water resources (see also refs. 13 and 27). This period
of unprecedented drought coincides with the increased distur-
bance indicators on Atiu described above (Fig. 2 and Table 1)
which, when paired with human and/or pig fecal markers,
strongly suggests human activity on the island.

From c. AD 1150 to 1300, the period in which the furthest
regions of Polynesia were colonized, the climate of the South
Pacific changes (Figs. 3 and 4B). SSTs in the West Pacific Warm
Pool and zonal SST are high, and the central Pacific ITCZ moves
south or expands (Fig. 3E) (wetter in Kiribati c. AD 1150) (Fig.
3E). Under these conditions the SPCZ typically moves south and
extends southeast and precipitation intensifies and becomes
more variable with increasing ENSO frequency (37), resulting in
the observed increases in precipitation inferred from regional
proxy climate data (38) (Fig. 4B). ENSO frequency is higher at
this time (Fig. 3E), forcing increased variability in precipitation
but also opening sailing windows to Rapa Nui and New Zealand
(36). Dates for the arrival of people on Rapa Nui [c. 1150 to 1300
AD (21, 34)] coincide with this period—the voyages perhaps
being supported by increased precipitation at this time (13).
Our climate data coincide with evidence from Samoa and

Tonga for marked demographic changes, growing social in-
equality, and intergroup competition from as early as the 5th
century AD (29, 39). By the 9th century AD, both traditional
histories and archaeological records suggest emergence of the
powerful Tongan maritime chiefdom and its hegemonic expansion
across West Polynesia over the next few centuries (39). The in-
tersection of these developments with the prolonged, regional
drought indicated in our cores was undoubtedly consequential in
eastward explorations and ultimately outmigrations from the West
Polynesian heartland [or possibly elsewhere (40)]. The Lake Te
Roto records suggest that rather than precipitous or haphazard
departures, settlement of the SCIs was an incremental, multi-
phased process that potentially involved the accumulation of
critical environmental knowledge over several generations. These
findings have implications for current thinking about the timing,
character, and pulse of East Polynesian settlement as a whole.

Materials and Methods
Cores were collected from all lakes using a combination of UWITEC gravity
coring to capture the top of the sediment including the sediment–water
interface and piston coring (GeoCore) to recover subsequent overlapping
sequences of sediment. All cores were kept intact and stored in airtight
tubes during transport and placed in cold storage (+4 °C). In the laboratory,
cores were split longitudinally and underwent low-frequency magnetic
susceptibility analysis and micro X-ray fluorescence (μXRF) analysis before
being subsampled at contiguous 1-cm intervals for loss on ignition (LOI). We
cross-correlated the individual cores using the continuous data (LOI, mag-
netics, μXRF) to produce single master core sequences.

In all three lakes, we reconstructed hydroclimate using hydrogen isotope
ratios of lipid biomarkers (δ2Hlipid = ([2H/1Hsmpl]/[

2H/1Hstd]) − 1)*1000, where
std is Vienna standard mean ocean water). Sediment subsamples (1 cm thick)
were removed from split cores or from field-sectioned material and trans-
ferred to combusted glass vials, frozen, and then freeze-dried. Lipids were
purified and quantified following procedures detailed in SI Appendix and
refs. 41 and 42. For Lake Emoatul (Vanuatu) and Lake Lanoto‘o (Samoa),
precipitation (mm/d) was calculated with the δ2Hdinosterol−GPCP (Global
Precipitation Climatology Project) core top calibration detailed in ref. 41 and
SI Appendix. Algal lipids obtain all of their lipid hydrogen from lake water,
which in turn responds isotopically to increases and decreases in precipitation
and evaporation. For Lake Te Roto, Atiu (SCIs), we used high-chain-length fatty
acids (C26) to determine hydrogen isotope ratios of terrestrial plant leaf waxes
to avoid complications of ocean water connections to the lake and associated
salinity effects on aquatic lipids that may not coincide with changes in hy-
drology (43, 44). The hydrogen isotopic composition of plant leaf waxes
(δ2Hlw), including the long-chain n-alkyl compounds that comprise the waxes,
is largely controlled by the hydrogen isotopic composition of a plant’s source
water (soil water) δ2H and relative humidity (45, 46).

For the Lake Te Roto core, eight proxy indicators were analyzed. We used
microcharcoal (<125 μm) and macroscopic (>125 μm) charcoal to define the
presence of burning on the landscape (47). To assess changes in soil erosion
within the catchment, we measured magnetic susceptibility and titanium
(25, 26). Lake productivity and in-wash were tracked using C/N, δ13C, and
total organic carbon (TOC) (22, 23). We normalized the Ti terrigenous proxy
data by the Compton/incoherent scatter signal from the μXRF ITRAX scanner
to account for changes in water and organic matter content (48).
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Fig. 4. Synthesis of climate changes over the period of initial human mi-
gration into the East Polynesian gateway Islands c. AD 800 to 1125, and
during the period of expansion into Rapa Nui and New Zealand c. AD 1150
to 1300 (corresponding to the gold column in Fig. 3). Circle colors show drier
(yellow) and wetter (green) climate while sizes of circles are proportional to
the magnitude of change. White arrows show movement of the ITCZ and
SPCZ, and black arrows show the known extent of Polynesian voyaging.
Initial migration east occurs during a regional change in climate as the ITCZ
and SPCZ migrate north, while the latter contracts and weakens resulting in
drought across the south Pacific Islands. Post c. AD 1150 the ITCZ moved
south again and the SPCZ axis probably moved south and extended, pro-
viding better conditions for settlement on the more isolated and smaller
islands of the eastern Pacific. Background colors show mean annual pre-
cipitation (GCGP 1976 to 2013). Dashed lines show the average axis of SPCZ
precipitation over this latter period. Sources used for this figure are in SI
Appendix, Table S4.
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To confirm the presence of mammals (pigs and/or humans), we measured
fecal sterol ratios (20). Lipid biomarker analysis followed standard protocols
(49) (SI Appendix). Sampling for fecal sterol ratios was concentrated at
sediment core intervals, where initial anthropogenic disturbance was sug-
gested by macrocharcoal, magnetics, and Ti/Inc. values. Given that steroids
(in particular 5β-stanols) have low water solubility and are mainly adsorbed
to particulate organic matter, they are not prone to leaching (50). Further
details on all methods are found in SI Appendix.

Data Availability Statement. All data supporting this study are contained in
Dataset S1.
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