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Randomized Strategies and Prospect Theory in a

Dynamic Context†
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When prospect theory (PT) is applied in a dynamic context, the probability weighting com-

ponent brings new challenges. We study PT agents facing optimal timing decisions and consider

the impact of allowing them to follow randomized strategies. In a continuous-time model of gam-

bling and optimal stopping, Ebert and Strack (2015) show that a naive PT investor with access

only to pure strategies never stops. We show that allowing randomization can significantly alter

the predictions of their model, and can result in voluntary cessation of gambling.
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The most distinctive feature of prospect theory (PT) (Tversky and Kahneman (1992))

is that cumulative probabilities are transformed such that individuals overweight tail

events (Quiggin (1982)). Whilst probability weighting has been well studied in static

models, the challenges involved in extending the theory to a dynamic setting are consid-

erable. As such, our understanding of the implications of PT in a dynamic context is still

developing. This paper considers the role of randomization in the agents’ set of potential

strategies and re-examines the impact of probability weighting in a dynamic context. Our

motivation for considering randomization is that we are able to provide new insights on

the recent striking result of Ebert and Strack (2015).

Building on a discrete-time model of casino gambling studied by Barberis (2012), Ebert

and Strack (2015) study the dynamic investment and gambling behavior of PT agents who

are naive.1 In the Ebert and Strack (2015) model, wealth (prior to any decision to stop

gambling) follows a Brownian motion. Agents choose a stopping time, so that the payoff

is the value of the stopped process; agents evaluate payoffs using PT. Ebert and Strack

show that for a wide range of PT specifications the agent who can commit his future

self to following a given strategy would prefer a stopping rule based on first exit time of

Brownian motion from a well-chosen interval to one of stopping immediately. From this

fact they are able to make a drastic inference: the naive PT agent never stops - instead

he gambles until the bitter end.

Ebert and Strack (2015) focus on pure strategies. However, it is well known (Wakker

(1994), and Theorem 7.4.1 of Wakker (2010))2 that in a static setting PT agents may

1At each instant the naive agent evaluates prospects in an identical fashion to an agent who can

commit to a fixed stopping rule. But if today the naive agent elects to gamble with the intention of

following a given strategy in the future, then he has no way of forcing his future self to follow that

strategy. Instead, at each future moment the naive agent re-evaluates all possible strategies and takes

a new decision about whether to gamble further, or to stop. The strategy of the naive agent is the

instantaneous strategy of a family of agents who can commit, one for each possible future state of the

world.
2See also Carassus and Rásonyi (2015) and He et al (2016). Early versions of this paper and He et

al (2016) make the point that agents can benefit from following randomized strategies in the Barberis
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benefit from following randomized strategies.3 Hence, in our dynamic setting we might

expect a PT agent who can randomize his strategy to outperform one who cannot. We

assume that the agent can base his decision on whether to stop on the outcome of a

random event.4 In particular, although he cannot commit his future self to follow a given

strategy, he can commit his current self to follow strategies which depend on the outcome

of a contemporaneous random event.

Ebert and Strack (2015) show how to choose an interval [a, b] containing the initial

wealth x such that stopping at the first exit time from this interval is strictly preferred to

stopping immediately. Their result is true under a mild condition described as probability

weighting being stronger than loss aversion, which they demonstrate holds for the most

popular weighting functions. They then extend their arguments based on intervals to prove

that for agents restricted to pure strategies, the optimal strategy is to follow a never-

stopping strategy and to gamble until the bitter end. We argue that a naive agent with a

randomization device (the ability to generate a continuous random variable), and with the

ability to commit his current self to following strategies which depend on the realization

of this device, does not necessarily follow a never-stopping strategy. The randomized

strategy of sometimes stopping immediately and sometimes stopping on first exit from

[a, b] is typically a better prospect than simply stopping on first exit from the interval.

Hence the analysis of Ebert and Strack is no longer sufficient to conclude that the naive

agent never stops, once randomization is allowed. We give a realistic and tractable example

for which we calculate the optimal prospect of an agent and show that if the initial value

(2012) model of casino gambling.
3Wakker (1994, 2010) considers mixed strategies in the context of rank dependent utilities and a static

choice of prospect and relates the benefit of using mixed strategies to the concavity of the probability

weighting function.
4The ineffectiveness of randomization without the ability to commit to the outcome of a random

event is well known, see Section 4.2 of Machina (1989). If an agent re-evaluates his candidate strategies

after being made aware of the outcome of a random event then, if it was optimal to follow a randomized

strategy before the outcome is known, it is again optimal to do so after the outcome is known, and a new

randomization is required. A naive agent without the ability to commit to the random outcome enters

an ‘infinite loop of indecision’.
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of the Brownian motion is at the reference level, then the optimal prospect includes an

atom at the reference level. A naive agent who can randomize may stop at this level.

Thus the drastic conclusion of Ebert and Strack (2015) that naive PT agents never

stop is no longer the unique prediction if we allow for a wider class of strategies. Naive

PT agents who can follow randomized strategies may voluntarily stop gambling.

1 Optimal stopping and prospect theory

1.1 Prospect Theory preferences

If X is a random variable then the PT value of X is given by (see Kothiyal et al (2011))

E(X) =

∫
R+

w+(P(v(X) > y))dy −
∫
R−
w−(P(v(X) < y))dy (1)

where the value function v : (−∞,∞) 7→ (−∞,∞) is strictly increasing with v(0) = 0,

and w± are a pair of probability weighting functions w± : [0, 1]→ [0, 1] which are strictly

increasing and continuous and satisfy w±(0) = 0 and w±(1) = 1.

As is standard in the PT literature, we assume that v is continuous, v(0) = 0, v is

concave and increasing on x > 0 and convex and increasing on x < 0 and v satisfies

the (simple) loss aversion property v(x) + v(−x) < 0 for all x. We assume that w± is

concave on [0, Q±] and convex on [Q±, 1] for some Q± ∈ (0, 1), with w±(1/2) < 1/2. This

last condition is the prevailing experimental finding and is a combination of likelihood

insensitivity and pessimism (see Wakker (2010)). Then w± is of inverse-S shape.

We assume that the agents’ wealth from gambling or trading of assets follows a Brow-

nian motion Bx = (Bx
t )t≥0 where the superscript x denotes the fact that the Brownian

motion starts at x.5 The strategies available to the agent correspond to stopping times τ ,

representing when to sell an asset or stop gambling, and then the stopped value X = Bx
τ

represents the prospect of the agent. The goal of the agent is to find Ṽ (x) = supτ∈Λ E(Bx
τ ).

5As in Ebert and Strack (2015) our results generalize to time-homogeneous diffusions. However, the

continuity of the wealth process is a key assumption.
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Here Λ is the set of uniformly integrable6 stopping times. Xu and Zhou (2013) analyze

optimal stopping problems of this type, primarily for prospects involving gains only.7 One

of the insights of Xu and Zhou (2013) is that the search over stopping times can be re-

placed by a search over random variables. They show that if V (x) = supX:E[X]=x E(X)

then V (x) = Ṽ (x). Our goal is to find V (x) = Ṽ (x) and the set of optimizers for V

(prospects or random variables) and Ṽ (stopping times). We concentrate on the case of

initial wealth equal to the reference level.

1.2 Randomization in continuous-time stopping models

Ebert and Strack (2015) show that a strategy of stopping on first-exit from a well-chosen

interval is preferred to stopping immediately and conclude that naive agents restricted to

pure strategies follow a never-stopping strategy. For completeness we restate their result

as Proposition 4 in the Appendix. We prove in Proposition 5 that in the same set-up

as Ebert and Strack (2015) the strategy of stopping on first exit from an interval can

typically be improved upon by mixing with sometimes stopping immediately. This means

that the conclusion of Ebert and Strack (2015) that a naive agent never stops may not

extend to naive agents with access to randomized strategies. When allowing randomized

strategies it is no longer sufficient to identify a prospect which is preferred to stopping

immediately: instead, we must identify the optimal prospect. If this prospect has mass at

the current wealth level, and if the naive agent can commit his current self to a strategy

which depends on the outcome of a contemporaneous random event, then such an agent

may stop. This is the program of the next section: we give an simple, tractable example

in which the optimal prospect for an agent with zero initial wealth has a mass at zero,

and therefore in which the naive agent may stop.

6Recall that the set of uniformly integrable stopping times is the set of finite stopping times ρ such

that (Bxt∧ρ)t≥0 is a uniformly integrable family of random variables.
7Xu and Zhou (2013) cover many different shapes of v and w± but concentrate on the one-sided

case of gains (or losses) only. They restrict their remarks about the two-sided case to describing a broad

approach for these problems, but they do not have any general results or solve any examples.
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2 An example: a naive agent may stop

2.1 Specification and Optimal Prospect

Assume that the value function takes the form

v(x) =

 ln(1 + x) x ≥ 0

Kx x < 0
(2)

whereK > 1. For w− assume only that it is inverse-S shaped, and let q− = arginfp∈[0,1]
w−(p)
p

.

Assume that w+ is piecewise linear:8

w+(p) =


αp 0 ≤ p ≤ q+

αq+ + β(p− q+) q+ < p < α−1
α−β + q+

1− α(1− p) α−1
α−β + q+ ≤ p ≤ 1

(3)

where α > 1, β ∈ (0, 1) and q+ are constants with9 0 < q+ < 1−β
2(α−β)

.

A change of variable in (1) yields an equivalent formulation

E(X) =

∫
R+

v′(z)w+(FX(z))dz −
∫
R−
v′(z)w−(FX(z))dz (4)

where FX is the cumulative distribution function (CDF) of X and FX(x) = 1 − FX(x).

Our problem is to find (the optimizer for)

V = sup

{∫ ∞
0

1

1 + x
w+(F̄X(x))dx−K

∫ 0

−∞
w−(FX(x))dx

}
(5)

where the supremum is taken over random variables X with mean 0.

Proposition 1 Suppose w± are such that q+ + q− < 1 and 1−αq+
1−q+ < Kw−(q−)

q−
< α. If

x = 0 then the optimal prospect P∗ = P∗0 is a discrete random variable with masses of

sizes (q−, 1− q− − q+, q+) at the points (− ν
q−
, 0, ν

q+
), where ν = q+

(
αq−

Kw−(q−)
− 1
)
.

8Piecewise linear weighting functions of this form were proposed by Webb (2015) as a simple gen-

eralization of the probability weighting function used in the NEO-expected utility of Chateauneuf et al

(2007). Relative to the NEO-expected utility probability weighting functions, a piecewise linear function

has the advantage of being continuous.
9A condition q+ ≤ 1−β

(α−β) is required to ensure that α−1
α−β + q+ ≤ 1. The additional factor of 1

2 ensures

that w+( 1
2 ) < 1

2 .

6



It follows from the proposition that the optimal prospect when wealth is at the reference

level of zero includes a point mass at the reference level.10,11

2.2 An optimal stopping rule

The conclusion from the previous section is that there are circumstances in which the

optimal prospect includes a mass at zero. Typically (as in the example above) there is

uniqueness at the level of optimal prospects. But there are many stopping rules an agent

might use to attain a given prospect.12

One way to achieve the prospect P∗0 is to use a stopping rule in which the stopping

time is the first time Brownian motion falls below a well-chosen function of the running

maximum. The Azéma-Yor (1979) solution of the Skorokhod embedding problem takes

this form.

A second way to achieve the prospect P∗0 is to wait until Brownian motion hits â =

−ν q++q−
q−

or b̂ = ν q++q−
q+

, and then to stop the first time thereafter that the Brownian

motion is at − ν
q−

, 0 or ν
q+

.

10The crucial ingredient in our set-up that leads to the conclusion of an atom at zero in the optimal

prospect is the fact that the value function has finite slope to the right of the reference level. We have

considered several other examples, and again found that the optimal prospect contains a mass at the

reference level. We considered an example with value function on gains v(x) = min{x, 1} and a general

pair of probability weighting functions w± and discovered that subject to plausible conditions on w± the

optimal prospect includes a mass at the reference level. In this example, the satiation of the utility is not

driving the result, but allows us to find an explicit solution for general weighting functions.
11For the purposes of the discussion in Section 2.3 concerning the behavior of the naive agent, the

significant conclusion is that there is an initial wealth level for which the optimal prospect places mass

at that wealth level. We have found examples with infinite slope of the value function at zero for which

this is the case and for which the naive agent may stop away from the reference level.
12In the probability literature, these are known as solutions of the Skorokhod embedding problem. The

only cases where there is a unique embedding (within the class of uniformly integrable embeddings) are

those where the optimal prospect is either a point mass at the reference level (when stopping immediately

is the only strategy) or a pair of point masses at locations ǎ < 0 < b̌ (when the only strategy is to stop on

first exit from the interval (ǎ, b̌)). In general, for dynamic optimal stopping problems under probability

weighting we must expect non-uniqueness of the optimal stopping rule.
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For an agent with access to a randomization device (in the form of an independent ran-

dom variable) other stopping rules attain optimality. The simplest is to stop immediately

with probability 1 − q+ − q− and to otherwise stop the first time the Brownian motion

reaches − ν
q−

or ν
q+

.

A further way to achieve the prospect P∗0 is to stop the first time the Brownian motion

hits − ν
q−

or ν
q+

, and also to stop at zero at a constant rate13 Φ, where Φ = 1−q+−q−
ν

. This

stopping rule is time-homogeneous and Markovian in the sense that the decision to stop

only depends on the current value of the wealth process. In fact it is the unique stopping

rule with these properties.

2.3 Naive agents in our example

Proposition 1 describes the optimal prospect for the PT agent, and the discussion in

Section 2.2 describes some optimal strategies for an agent with zero initial wealth who

can commit to a strategy or stopping rule. What then is the strategy followed by the

naive agent? The strategy of the naive agent14 is the instantaneous, time 0, element of

the planned strategy of the agent who can commit to a stopping rule.

When the Brownian motion is at the reference level there is a family of optimal strate-

gies for the agent who can commit, and no unique prediction for the behavior of the

naive agent. Any behavior at the reference level (including stopping immediately, always

continuing, or stopping at a rate) is consistent with the behavior of a naive agent.15

Can we make a more precise prediction for the behavior of a naive agent by restrict-

ing attention to reasonable strategies? What might be considered a characteristic of a

reasonable strategy? One characteristic would be homogeneity in time, so that the same

rule is used to stop or otherwise each time the process returns to a given level. A second

13Then, in the absence of stopping at − ν
q−

or ν
q+

, the probability the process has not been stopped by

time t is e−ΦL0
t where (L0

u)u≥0 is the local time of Brownian motion at zero.
14We assume the naive agent has a randomization device and can use randomized strategies which

depend on the outcomes of contemporaneous random events.
15If only pure strategies are deemed admissible, then the Ebert and Strack (2015) result implies that

instantaneous stopping is never optimal.
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characteristic would be that the decision to stop, now and in the future, depends on the

prevailing level of the wealth process and not on any other factors. This suggests that a

naive agent should adopt a Markovian strategy. Within the class of time-homogeneous,

Markovian stopping rules there is a unique strategy which attains a given prospect.16 If

we insist that the naive agent chooses strategies from this class then there is a unique pre-

diction for his behavior. Except in trivial cases, the use of a Markovian strategy requires

randomization.

Earlier we gave four stopping rules an agent with the ability to commit might use to

attain the optimal prospect. The first strategy based on the Azéma-Yor stopping time

is Markov in the pair (Bt, St = sups≤tBs)t≥0 but it is not Markov in the wealth process

B alone. The second strategy is not time-homogeneous. Although neither Markovian nor

time-homogeneous both these strategies are pure, and never involve stopping immediately.

A naive agent basing his strategy on these rules never stops, as predicted by Ebert and

Strack (2015).

The third proposed strategy for the agent is to stop immediately with probability

1 − q+ − q−, and otherwise to stop the first time the wealth process leaves the interval

(− ν
q−
, ν
q+

). This requires a randomization device at t = 0. The strategy is time inhomo-

geneous since the agent plans to use a different strategy on any future returns to zero. A

naive agent following this strategy has a positive probability of stopping every time the

Brownian motion is at the reference level. Since Brownian motion started at zero returns

to zero infinitely often in any positive time interval, the naive agent using this strategy

stops the first time the Brownian motion hits zero with probability one. For wealth pro-

16The key result is the following:

Proposition 2 (Bertoin and Le Jan (1992)) Let FX denote the CDF of a centred random variable

X. Define UX(x) =
∫
|y − x|FX(dy) and set χ(dx) = FX(dx)

UX(x) and Γt =
∫
R L

x
t χ(dx), where (Lxt )x∈R,t≥0

is the local time of a Brownian motion B. Then if T is a rate 1, exponential random variable which is

independent of B, and if ρ = inf{u : Γt > T} then ρ is a uniformly integrable stopping time and Bρ has

the same law as X.
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cesses started at the reference level, stopping is immediate with probability one, the exact

converse to the Ebert and Strack (2015) result of always waiting to the bitter end.17

The fourth strategy also requires randomization, but is Markovian and time-homogeneous.

The naive agent following this stopping rule stops at the origin at rate Φ. The decision

about whether to stop or continue depends only on the current value of wealth, and does

not depend on any other factors (including time). The discussion of this Section can be

summarized as the following result.

Theorem 3 Suppose the naive agent uses a Markovian time-homogeneous strategy. Then,

for the example in Section 2.1, (more generally, for a non-empty, open set of parameterized

examples of the form given in Section 2.1) the agent may stop at the reference level.

3 Conclusion

This paper derives new results on prospect theory in a dynamic context. Our contribution

is to revisit the continuous-time model of Ebert and Strack (2015) under an assumption

that agents have access to a richer information structure. Ebert and Strack argue that

for any reasonable specification of PT preferences, a naive agent prefers to stop on first

exit from some interval to stopping immediately. In a general setting there is a mixed

strategy which is preferred to the strategy proposed by Ebert and Strack. This strategy

may involve stopping at the reference level. Moreover, in an example, we show that the

optimal prospect for an agent includes a mass at zero.18 If the naive agent is able to follow

randomized strategies, and is able to the commit to the outcome of contemporaneous

random events, then the agent may realize this optimal prospect with a strategy which

17The third proposed strategy yields the earliest stopping. Conversely, any pure, never-stopping strat-

egy is the latest stopping rule which is consistent with the behavior of the naive agent.
18More generally, our results indicate that a necessary condition for the optimal prospect for an agent

with initial wealth equal to the reference level to include an atom at the reference level is that the value

function exhibits finite marginal loss aversion.
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involves sometimes stopping.19

Typically, unlike the case with no probability weighting, the optimal prospect of a

PT agent places mass at more than two points. It follows that the agent who is able to

commit to a strategy can realize this optimal prospect using a variety of different stopping

rules. The probability weighting element of prospect theory brings a new challenge to

the analysis of optimal stopping in a dynamic setting: there is a multiplicity of optimal

strategies. This applies to both the agent who can commit, and to the naive agent,20 and

may impact on the usefulness of PT as a predictive model in a dynamic setting.

Ebert and Strack (2015) show that under pure strategies, PT preferences and näıvité

lead to the conclusion of never stopping. The authors discuss options to evade their never

stopping result including dispensing with the probability weighting element of PT or

the notion of näıvité. Our results show that a third possibility is to retain probability

weighting and näıvité but to allow the agent to use randomized strategies.
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A Randomization in continuous-time models

Assume the reference level is zero, and that the initial value of the Brownian motion is at the

reference level.

Proposition 4 (Ebert and Strack (2015)) Suppose that (in addition to the standard as-

sumptions listed in Section 1.1) the value function v satisfies 0 < v′(0−) = Kv′(0+) < ∞ for

some K > 1.21 Suppose for the probability weighting functions w± there exists22 a p̂ ∈ (0, 1/2)

such that

w+(p̂) >
Kp̂

1 + (K − 1)p̂
, w−(1− p̂) < 1− p̂

1 + (K − 1)p̂
. (6)

Then there exists ε̂ > 0 such that the agent with zero initial wealth prefers gambling until his

wealth reaches ε̂(1− p̂) or −ε̂p̂ to stopping immediately.

From this result Ebert and Strack (2015) infer that a naive agent who can only use pure

stopping rules always postpones stopping decisions and hence, never stops.23

Now we move on to mixed strategies. We show that in the set-up considered in the main body

of Ebert and Strack (2015), the agent who can randomize his strategy prefers such a mixture.

Thus if the naive agent can mix over strategies then he prefers sometimes stopping over never

stopping.

21Under this assumption the value function exhibits finite marginal loss aversion in the sense that

v′(0+) < v′(0−) < ∞. Köbberling and Wakker (2005) introduce this notion of loss aversion and show

that it has the advantage of being scale independent. We have added the adjective marginal to distinguish

the concept from simple loss aversion v(x) + v(−x) < 0.
22Ebert and Strack (2015) show that a sufficient condition for there to exist a p̂ such that (6) holds

is both w′+(0+) > K and w′−(1−) > K. This property says that extremely unlikely gains are over-

weighted and extremely likely losses are underweighted, both by more than the loss aversion parameter,

ie. probability weighting is stronger than loss aversion.
23Ebert and Strack (2015) extend their arguments to show that the never stopping conclusion holds in

settings with infinite marginal loss aversion such as the Kahneman and Tversky (1979) power S-shaped

value function.
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Proposition 5 Suppose that, in addition to the assumptions of Proposition 4 we have24,25

w′−((1− p̂)) > w′+(p̂). (7)

Then there exists θ̂ ∈ (0, 1) such that the agent with zero initial wealth prefers a randomized

strategy of stopping immediately with probability (1− θ̂) and otherwise gambling until his wealth

reaches ε̂(1− p̂) or −ε̂p̂ to the pure strategy of gambling until his wealth reaches ε̂(1− p̂) or −ε̂p̂.

Proposition 5 shows that the first exit strategy of Ebert and Strack (2015) can be improved

upon by mixing with sometimes stopping immediately, and hence that the argument in Ebert

and Strack is not sufficient to conclude that a naive agent never stops if that agent has access

to randomized strategies. Instead, we need to identify the optimal prospect:26 if this prospect

has no mass at the reference level, then a naive agent with the ability to randomize would never

stop at the reference level. The main focus of the paper is to show that in general this is not the

case, by giving an example in which the optimal prospect has a mass at zero.

24Since w±( 1
2 ) < 1

2 we must have
∫ 1

2

0
w′−(1 − p)dp >

∫ 1
2

0
w′+(p)dp and for any probability weighting

functions there must exist a range of p̂ for which (7) holds. If we take the same parameters and functions

as in Table W.1 of Ebert and Strack (2015) then for the Tversky and Kahnemann (1992) and Goldstein

and Einhorn (1987) weighting functions (7) holds for all p̂ < 1
2 .

25If, in addition to the restrictions on parameters of w± in Section 2.1 and Proposition 1, we add

an assumption that α > K
1+(K−1)q+

and w−(1 − q) < 1−q
1+(K−1)q for all q ≤ q+ then (6) holds for all

p̂ with 0 ≤ p̂ ≤ q+. If also w′−(1 − q) > α for all q ∈ (0, q) for some q < q+ (such a q exists for the

Tversky-Kahneman weighting function, and indeed any continuously differentiable weighting function w−

with w′−(1−) = ∞) then (7) holds for all p̂ with p̂ ≤ q. Then we have an example which satisfies the

conditions of Proposition 4, Proposition 5 and Proposition 1. For this example, a naive agent with no

access to randomization and with zero initial wealth will never stop (Proposition 4, Ebert and Strack

(2015)). Such an agent can benefit from randomization (Proposition 5) and his optimal prospect includes

an atom at zero (Proposition 1).
26Azevedo and Gottlieb (2012, Proposition 2) show that for many examples the problem of finding the

optimal prospect is ill-posed, in the sense that there is a sequence of prospects such that the PT value

diverges to infinity. But, there are examples which are well-posed, and then our results have greater force.
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A.1 Proofs of Propositions 4 and 5

Proposition 4

Let ε be a positive constant which later we will treat as a parameter. Let bε = ε(1 − p̂) and

aε = −εp̂. Suppose the agent has zero initial wealth. One strategy open to the agent is to gamble

until the first time his wealth reaches bε or aε and then to stop. By construction, the probability

that the process hits bε before aε is p̂. Then the value Hp̂(ε) of this strategy is:

Hp̂(ε) = w+(p̂)v(bε) + w−(1− p̂)v(aε) = w+(p̂)v(ε(1− p̂)) + w−(1− p̂)v(−εp̂).

Note that Hp̂(0) = 0. Now, writing H ′p̂ for the derivative with respect to ε,

H ′p̂(0+) = (1−p̂)w+(p̂)v′(0+)−p̂w−(1−p̂)v′(0−) > p̂(1−p̂)
{

K

1 + (K − 1)p̂
− K

1 + (K − 1)p̂

}
v′(0+) = 0.

Hence there exists ε̂ > 0 for which Hp̂(ε̂) > 0 and for this (p̂, ε̂) the agent prefers to continue

(run until wealth first hits bε̂ or aε̂) over stopping immediately.

Proposition 5

Suppose the agent stops gambling immediately with probability 1 − θ and otherwise gambles

until his wealth reaches bε̂ or aε̂. Fixing p̂, ε̂ as in Proposition 4, considering θ as a variable and

writing Hp̂,ε̂(θ) as the value of the strategy,

Hp̂,ε̂(θ) = w+(θp̂)v(bε̂) + w−(θ(1− p̂))v(aε̂) = w+(θp̂)v(ε̂(1− p̂)) + w−(θ(1− p̂))v(−ε̂p̂).

Note that Hp̂,ε̂(0) = 0 and Hp̂,ε̂(1) > 0 by design. Then

∂

∂θ
Hp̂,ε̂(θ) = p̂w′+(θp̂)v(ε̂(1− p̂)) + (1− p̂)w′−(θ(1− p̂))v(−ε̂p̂)

= p̂(1− p̂)
[
w′+(θp̂)

v(ε̂(1− p̂))
1− p̂

+ w′−(θ(1− p̂))v(−ε̂p̂)
p̂

]
.

Since v is concave on x > 0, v(x) + v(−x) < 0 and p̂ < 1/2, we have

v(−ε̂p̂)
p̂

< −v(ε̂p̂)

p̂
< −v(ε̂(1− p̂))

1− p̂
.

Recall our hypothesis that w′−((1− p̂)) > w′+(p̂). Then

∂

∂θ
Hp̂,ε̂(θ)

∣∣∣∣
θ=1

< p̂
{
w′+(p̂)− w′−(1− p̂)

}
v(ε̂(1− p̂)) < 0,

and Hp̂,ε(θ) is maximized at some interior point. The agent who can randomize prefers a mixed

strategy of sometimes stopping and sometimes waiting until wealth first leaves the interval

(aε̂, bε̂) to a pure strategy of waiting until wealth first leaves the same interval.
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B The solution in the example of Section 2

Define

D(µ) = sup∫∞
0 F̄X(x)dx=µ=

∫ 0
−∞ FX(x)dx

{∫ ∞
0

1

1 + x
w+(F̄X(x))dx−K

∫ 0

−∞
w−(FX(x))dx

}
.

Then V = supµD(µ). The expression for D(µ) can be rewritten as

D(µ) = sup
(h+,h−)∈A2

1(µ)

{∫ ∞
0

1

1 + x
w+(h+(x))dx−K

∫ ∞
0

w−(h−(x))dx

}
where the set A2

1(µ) is given by

A2
φ(µ) =

{
(h+, h−) : [0,∞)2 → [0,∞)2, h±decreasing and right continuous, h±(0) ≤ 1,∫ ∞

0
h±(x)dx = µ, h+(0) + h−(0) ≤ φ

}
.

Then D(µ) ≤ D̃(µ) where

D̃(µ) = sup
(h+,h−)∈A2

2(µ)

{∫ ∞
0

1

1 + x
w+(h+(x))dx−K

∫ ∞
0

w−(h−(x))dx

}
.

In calculating D(µ) we require the total mass of the target law X to be less than or equal to one

(with the understanding that X can be made into a random variable with unit total mass by

including an atom at zero). In calculating D̃(µ) we make no such requirement. The advantage

of considering D̃(µ) is that the problems over gains and losses decouple:

D̃(µ) = sup
h∈A1

1(µ)

{∫ ∞
0

1

1 + x
w+(h(x))dx

}
−K inf

h∈A1
1(µ)

{∫ ∞
0

w−(h(x))dx

}
where

A1
φ(µ) = {h : [0,∞)→ [0,∞), h decreasing and right continuous, h(0) ≤ φ,

∫ ∞
0

h(x)dx = µ}.

Set

G̃(w;µ) = sup
h∈A1

1(µ)

∫ ∞
0

1

1 + x
w(h(x))dx L̃(w;µ) = inf

h∈A1
1(µ)

∫ ∞
0

w(h(x))dx. (8)

Then

D̃(µ) = G̃(w+;µ)−KL̃(w−;µ).

Our plan is to solve for G̃(w+;µ) and L̃(w−;µ) (and to find respective optimizers hµ+, h
µ
−) and

hence to find the µ (µ̂ say) which maximizes D̃(µ). There are two possibilities. If hµ̂+(0)+hµ̂−(0) >
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1 then the optimizer for D̃ = supµ D̃(µ) is not feasible for D (and then the optimizer for D

depends on a complicated interplay between h+(0) and h−(0)); alternatively if hµ̂+(0)+hµ̂−(0) ≤ 1

then the optimizer for D̃ = supµ D̃(µ) is feasible for D and hence is an optimizer for D. The

corresponding optimal target law has P(X > x) = hµ̂+(x) for x > 0 and P(X < x) = hµ̂−(x) for

x > 0. If hµ̂+(0) + hµ̂−(0) < 1 then the optimal target law includes an atom of size 1− (hµ̂+(0) +

hµ̂−(0)) at zero.

Solution of the problem for gains

Recall that w+ is piecewise linear. Let W be the smallest concave majorant of w+. We solve the

maximization problem for the concave probability weighting function W . This gives an upper

bound for the problem with function w+. We show that this bound is attained.

Set γ = 1−αq+
1−q+ . Then γ ∈ (0, 1) and

W (p) =

 αp 0 ≤ p ≤ q+,

αq+ + γ(p− q+) q+ < p ≤ 1.

We want to find G̃(W,µ) = suph∈A1
1(µ) ĜW (µ, h) where

ĜW (µ, h) =

∫ ∞
0

1

1 + x

(
αh(x)I{h(x)≤q+} + (αq+ + γ(h(x)− q+))I{h(x)>q+}

)
dx.

Suppose first that µ ≤
(
α
γ − 1

)
q+. Set

I(x) = max
g∈[0,1]

{
1

1 + x

(
αgI{g≤q+} + (αq+ + γ(g − q+))I{g>q+}

)
− αq+g

µ+ q+

}
. (9)

Then, for h ∈ A1
1(µ),

ĜW (µ, h) ≤ αq+µ

µ+ q+
+

∫ ∞
0
I(x)dx (10)

From the piecewise linear structure of the objective function the maximum in (9) can only occur

at g ∈ {0, q+, 1} and

I(x) = max

{
0,

αq+

1 + x
−

αq2
+

µ+ q+
,

1

1 + x
− αq+

µ+ q+

}
.

Then since(
αq+

1 + x
−

αq2
+

µ+ q+

)
−
(

1

1 + x
− αq+

µ+ q+

)
=

αq+

µ+ q+
(1−q+)− 1− αq+

1 + x
≥ γ(1−q+)−(1−αq+) = 0

we have

I(x) = αq+

(
1

1 + x
− q+

µ+ q+

)
I{x≤µ/q+}.
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Then for any h ∈ A1
1(µ)

ĜW (µ, h) ≤ q+αµ

µ+ q+
+

∫ µ/q+

0

[
αq+

(1 + x)
−

αq2
+

µ+ q+

]
dx = αq+ ln

(
1 +

µ

q+

)
. (11)

Further, if h(x) = q+I{x<µ/q+} then h ∈ A1
1(µ) and there is equality in (11). Hence G̃(W,µ) =

αq+ ln
(

1 + µ
q+

)
.

Finally, for the non-negative random variable X∗ = X∗(µ) defined via FX∗(x) = q+I{x<µ/q+}

for x ∈ (0,∞) we find

αq+ ln

(
1 +

µ

q+

)
=

∫ ∞
0

1

1 + x
w+(FX∗(x))dx ≤ G̃(w+, µ) ≤ G̃(W,µ) = αq+ ln

(
1 +

µ

q+

)
and hence G̃(w+, µ) = αq+ ln

(
1 + µ

q+

)
.

Now suppose µ >
(
α
γ − 1

)
q+. Set

J (x) = max
g∈[0,1]

{
1

1 + x

(
αgI{g≤q+} + (αq+ + γ(g − q+))I{g>q+}

)
− g

1 + µ

}
(12)

= max

{
0,

αq+

1 + x
− q+

1 + µ
,

1

1 + x
− 1

1 + µ

}
.

We find

J (x) =


1

1+x −
1

1+µ 0 ≤ x ≤ γ(1 + µ)− 1,

q+

(
α

1+x −
1

1+µ

)
γ(1 + µ)− 1 < x ≤ α(1 + µ)− 1,

0 γ(1 + µ)− 1 < x,

and the optimizer in (12) is g = h∗(x) where

h∗(x) =


1 0 ≤ x ≤ γ(1 + µ)− 1,

q+ γ(1 + µ)− 1 < x ≤ α(1 + µ)− 1,

0 α(1 + µ)− 1 < x.

(13)

Then for h ∈ A1
1(µ) we have

ĜW (µ, h) ≤ µ

1 + µ
+

∫ ∞
0
J (x)dx = αq+ ln

(
α

γ

)
+ ln γ(1 + µ).

As before, if we define X∗ via FX∗(x) = h∗(x) then

αq+ ln

(
α

γ

)
+ln γ(1+µ) =

∫ ∞
0

1

1 + x
w+(FX∗(x)) ≤ G̃(w+, µ) ≤ G̃(W,µ) ≤ αq+ ln

(
α

γ

)
+ln γ(1+µ)

Hence G̃(w+, µ) = αq+ ln
(
α
γ

)
+ ln γ(1 + µ).
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In summary,

G̃(w+, µ) =

 αq+ ln
(

1 + µ
q+

)
0 < µ ≤ q+

(
α
γ − 1

)
αq+ ln

(
α
γ

)
+ ln γ(1 + µ) µ > q+

(
α
γ − 1

)
Note that G̃(w+, ·) is continuously differentiable (and concave) in its second argument. Let G be

the inverse to the derivative of G̃: then G(y) = (G̃′)−1(y) = ( 1
y − 1)I{y<γ} + q+(αy − 1)I{y≥γ}.

Solution of the problem for losses

Let η = min
(
w−(p)
p

)
and let q− = argmin

(
w−(p)
p

)
. Then w−(h) ≥ ηh with equality at zero and

q−. For h ∈ A1
1(µ) we have ∫ ∞

0
w−(h(x))dx ≥

∫ ∞
0

ηh(x)dx = ηµ.

Set h∗(x) = q−I(x< µ
q−

). Then h∗ is admissible and
∫∞

0 w−(h∗(x))dx = µ
q−
w−(q−) = ηµ. Then h∗

is optimal.

Solution of the problem for gains and losses

By definition D̃ = supµ{G̃(w+;µ)−KL̃(w−;µ)}. We find that the supremum over µ is attained

at ν where, recall ν = G(Kw−(q−)
q−

) = q+

(
αq−

Kw−(q−) − 1
)

. Our condition that Kw−(q−)
q−

∈ (γ, α)

ensures that ν > 0. For µ = ν, the solution of the problem for gains is a mass of size q+ at ν
q+

,

and the solution of the problem for losses is a mass of size q− at − ν
q−

. Moreover, by hypothesis

q+ + q− < 1. Then D̃ = D and the optimizer for the problem is the prospect P∗0 .
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