341 research outputs found
A scalar invariant and the local geometry of a class of static spacetimes
The scalar invariant, I, constructed from the "square" of the first covariant
derivative of the curvature tensor is used to probe the local geometry of
static spacetimes which are also Einstein spaces. We obtain an explicit form of
this invariant, exploiting the local warp-product structure of a 4-dimensional
static spacetime, , where is
the Riemannian hypersurface orthogonal to a timelike Killing vector field with
norm given by a positive function, on . For a static
spacetime which is an Einstein space, it is shown that the locally measurable
scalar, I, contains a term which vanishes if and only if is
conformally flat; also, the vanishing of this term implies (a)
is locally foliated by level surfaces of , , which are totally
umbilic spaces of constant curvature, and (b) is locally a
warp-product space. Futhermore, if is conformally flat it
follows that every non-trivial static solution of the vacuum Einstein equation
with a cosmological constant, is either Nariai-type or Kottler-type - the
classes of spacetimes relevant to quantum aspects of gravity.Comment: LaTeX, 13 pages, JHEP3.cls; The paper is completely rewritten with a
new title and introduction as well as additional results and reference
Reverse Monte Carlo modeling of amorphous silicon
An implementation of the Reverse Monte Carlo algorithm is presented for the
study of amorphous tetrahedral semiconductors. By taking into account a number
of constraints that describe the tetrahedral bonding geometry along with the
radial distribution function, we construct a model of amorphous silicon using
the reverse monte carlo technique. Starting from a completely random
configuration, we generate a model of amorphous silicon containing 500 atoms
closely reproducing the experimental static structure factor and bond angle
distribution and in improved agreement with electronic properties. Comparison
is made to existing Reverse Monte Carlo models, and the importance of suitable
constraints beside experimental data is stressed.Comment: 6 pages, 4 PostScript figure
Supersymmetric solutions of PT-/non-PT-symmetric and non-Hermitian Screened Coulomb potential via Hamiltonian hierarchy inspired variational method
The supersymmetric solutions of PT-symmetric and Hermitian/non-Hermitian
forms of quantum systems are obtained by solving the Schrodinger equation for
the Exponential-Cosine Screened Coulomb potential. The Hamiltonian hierarchy
inspired variational method is used to obtain the approximate energy
eigenvalues and corresponding wave functions.Comment: 13 page
Two-loop corrections to the decay rate of parapositronium
Order corrections to the decay rate of parapositronium are
calculated. A QED scattering calculation of the amplitude for electron-positron
annihilation into two photons at threshold is combined with the technique of
effective field theory to determine an NRQED Hamiltonian, which is then used in
a bound state calculation to determine the decay rate. Our result for the
two-loop correction is in units of times the
lowest order rate. This is consistent with but more precise than the result
of a previous calculation.Comment: 26 pages, 7 figure
Novel universality class of absorbing transitions with continuously varying critical exponents
The well-established universality classes of absorbing critical phenomena are
directed percolation (DP) and directed Ising (DI) classes. Recently, the pair
contact process with diffusion (PCPD) has been investigated extensively and
claimed to exhibit a new type of critical phenomena distinct from both DP and
DI classes. Noticing that the PCPD possesses a long-term memory effect, we
introduce a generalized version of the PCPD (GPCPD) with a parameter
controlling the memory effect. The GPCPD connects the DP fixed point to the
PCPD point continuously. Monte Carlo simulations show that the GPCPD displays
novel type critical phenomena which are characterized by continuously varying
critical exponents. The same critical behaviors are also observed in models
where two species of particles are coupled cyclically. We suggest that the
long-term memory may serve as a marginal perturbation to the ordinary DP fixed
point.Comment: 13 pages + 10 figures (Full paper version
Evading the CKM Hierarchy: Intrinsic Charm in B Decays
We show that the presence of intrinsic charm in the hadrons' light-cone wave
functions, even at a few percent level, provides new, competitive decay
mechanisms for B decays which are nominally CKM-suppressed. For example, the
weak decays of the B-meson to two-body exclusive states consisting of strange
plus light hadrons, such as B\to\pi K, are expected to be dominated by penguin
contributions since the tree-level b\to s u\bar u decay is CKM suppressed.
However, higher Fock states in the B wave function containing charm quark pairs
can mediate the decay via a CKM-favored b\to s c\bar c tree-level transition.
Such intrinsic charm contributions can be phenomenologically significant. Since
they mimic the amplitude structure of ``charming'' penguin contributions,
charming penguins need not be penguins at all.Comment: 28 pages, 6 figures, published version. References added, minor
change
Quasinormal modes of Schwarzschild black holes in four and higher dimensions
We make a thorough investigation of the asymptotic quasinormal modes of the
four and five-dimensional Schwarzschild black hole for scalar, electromagnetic
and gravitational perturbations. Our numerical results give full support to all
the analytical predictions by Motl and Neitzke, for the leading term. We also
compute the first order corrections analytically, by extending to higher
dimensions, previous work of Musiri and Siopsis, and find excellent agreement
with the numerical results. For generic spacetime dimension number D the
first-order corrections go as . This means that
there is a more rapid convergence to the asymptotic value for the five
dimensional case than for the four dimensional case, as we also show
numerically.Comment: 12 pages, 5 figures, RevTeX4. v2. Typos corrected, references adde
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
Improved Surgical Outcomes for Breast Cancer Patients Receiving Neoadjuvant Aromatase Inhibitor Therapy: Results from a Multicenter Phase II Trial
Background: Neoadjuvant aromatase inhibitor therapy has been reported to improve surgical outcomes for postmenopausal women with clinical stage II or III hormone receptor-positive breast cancer. A multicenter phase II clinical trial was conducted to investigate the value of this approach for US surgical practice. Study Design: One hundred fifteen postmenopausal women with >2 cm, estrogen receptor (ER) or progesterone receptor (PgR)-positive breast cancer were enrolled in a trial of 16 to 24 weeks of letrozole 2.5 mg daily before operation. Results: One hundred six patients were eligible for primary analysis, 96 underwent operations, 7 received chemotherapy after progressive disease, and 3 did not undergo an operation. Baseline surgical status was marginal for breast-conserving surgery (BCS) in 48 (45%), 47 were definitely ineligible for BCS (44%), and 11 were inoperable by standard mastectomy (10%). Overall Response Evaluation Criteria In Solid Tumors clinical response rate in the breast was 62%, with 12% experiencing progressive disease. Fifty percent underwent BCS, including 30 of 46 (65%) patients who were initially marginal for BCS and 15 of 39 (38%) patients who were initially ineligible for BCS. All 11 inoperable patients successfully underwent operations, including 3 (27%) who had BCS. Nineteen percent of patients undergoing mastectomy had a pathologic T1 tumor, suggesting that some highly responsive tumors were overtreated surgically. Conclusions: Neoadjuvant aromatase inhibitor improves operability and facilitates BCS, but there was considerable variability in responsiveness. Better techniques to predict response, determine residual tumor burden before operation, and greater willingness to attempt BCS in responsive patients could additionally improve the rate of successful BCS
- …