
ar
X

iv
:q

ua
nt

-p
h/

06
02

19
4v

1 
 2

3 
Fe

b 
20

06

Supersymmetric solutions of
PT -/non-PT -symmetric and non-Hermitian
Screened Coulomb potential via Hamiltonian

hierarchy inspired variational method

Gholamreza Faridfathi, Ramazan Sever∗

Department of Physics, Middle East Technical University, 06531 Ankara, Turkey

February 9, 2020

Abstract
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1 Introduction

In the past few decades, the supersymmetric approach has been profitably applied to

many non-relativistic quantum mechanical systems [1-5]. The SUSYQM has provided sat-

isfactory results concerning different non-relativistic quantum mechanical systems, such as

the exactly solvable and partially solvable potentials [ 6-9]. The exactly solvable potentials

can be understood in terms of a few basic ideas which include supersymmetric partner

potentials, shape invariance and operator transformations.

Among the interesting problems of the non-relativistic quantum mechanics which aim to

find exact solutions to the Schrdinger equation for certain potentials of the physical interest,

the screened coulomb potentials have been studied in a variety branches of physics such

as atomic, nuclear and plasma physics [10-17]. Various types of the screened Coulomb po-

tentials like the Yukawa, Debye-Hückel and exponential-cosine screened Coulomb (ECSC)

potentials are discussed in non-relativistic quantum mechanics [18-20]. While the screened

Coulomb potential which is in the vector coupling prescription leads to an exactly solvable

for one dimensional Dirac and Klein-Gordon equations [21-23], the Schrödinger equation

for these potentials is not exactly solvable. Perturbative and approximation methods have

been applied to obtain their energy eigenvalues by using hypervirial/shifted 1/N expansion

technique, variational approach, Padé approximates, numerical integration and group theo-

retical approach [24-32]. The bound state energies of some potentials like the Morse, Pöschl-

Teller and other exponential type potentials are evaluated through the SUSYQM method

by following the PT -symmetric formalism [30-36]. PT -symmetric Hamiltonians satisfy the

parity (P) and time reversal (T ). The eigenvalue spectra of PT -symmetric potentials may

be real or complex [37]. If PT -symmetry is not spontaneously broken, the form of spectra

is real. For a class of non-Hermitian Hamiltonians, the concept of pseudo-hermiticity is
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valid [38]. In this work, the energy eigenvalues and corresponding eigenfunctions of PT -

/non-PT -symmetric and non-Hermitian types of the Exponential-Cosine Screened Coulomb

potential are obtained by using the Hamiltonian Hierarchy method within the context of

PT -symmetric quantum mechanics (PT -SQM).

This paper is organized as follows: In section 2, we give a brief pedagogical review of the

Hamiltonian hierarchy method. In section 3, we apply this method for the Exponential-

cosine screened Coulomb potential. In sections 4 and 5, the method is applied for the

PT -/non-PT -symmetric and non-Hermitian cases of this potential. In section 6, the re-

sults are discussed as a conclusion.

2 Hamiltonian hierarchy method

The radial Schrödinger equation for some specific potential energies can only be solved

analytically for the states with zero angular momentum [36, 37]. However, in supersymmet-

ric quantum mechanics one can deal with the hierarchy problem by using effective potentials

for non-zero angular momentum states in order to solve the Schrödinger equation analyt-

ically. Hamiltonian hierarchy method suggests a hierarchy problem in the frame of the

SUSYQM in which the adjacent members are the supersymmetric partners that share the

same eigenvalue spectrum except for the missing ground state.

In this method, the first step is to look for an effective potential similar to the origi-

nal specific potential and inspired by the SUSYQM to propose a superpotential, namely

W(l+1)(x), as an ansatz, where (l + 1) denotes the partner number with l = 0, 1, 2.... Sub-

stituting the proposed superpotential into the Riccati equation,

V(l+1)(x)−E0
(l+1) = W 2

(l+1)(x)−
dW(l+1)(x)

dx
, (1)
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the (l + 1)th member of the Hamiltonian hierarchy can be obtained. As a result, considering

the shape invariance requirement [14], the bound-state energies can be derived out through

the Eq. (1), and the corresponding eigenfunctions by means of,

Ψ(l+1)(x) = N exp(−
∫ r

W(l+1)(x
′)dx′). (2)

3 Exponential-cosine screened Coulomb potential

The cosine screened Coulomb potential is written as,

V (r) = −
q

r
e−λr cos(µr). (3)

Substituting cos(µr) = eiµr+e−iµr

2
in the above potential, we get,

V (r) = −q
e−λr

r
(
eiµr + e−iµr

2
). (4)

or,

V (r) = −
q

2

[

e(iµ−λ)r + e−(iµ+λ)r

r

]

. (5)

To simplify the calculations and for simplicity, let us take q = 2. Therefore,

V (r) = −
e−(λ−iµ)r

r
−

e−(λ+iµ)r

r
. (6)

This potential can be considered as two separate parts as,

V1(r) = −
e−(λ−iµ)r

r
, (7)

and,

V2(r) = −
e−(λ+iµ)r

r
. (8)
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By defining λ− iµ = α and λ + iµ = β, the superpotential proposed as an ansatz for the

V1(r) potential becomes,

W1(l+1)(r) = − (l + 1)
αe−αr

1− e−αr
+

1

l + 1
−

α

2
. (9)

According to the Hamiltonian hierarchy method, the corresponding eigenfunction for this

superpotential will be,

Ψ01(r) =
(

1− e−αr
)l+1

e−( 1

l+1
−

α
2
)r. (10)

Assuming that the radial trial wave function is given by (10), we replace α by the variational

parameter µ1, and as a result,

Ψµ1
(r) =

(

1− e−µ1r
)l+1

e−( 1

l+1
−

µ1
2
)r. (11)

The variational energy is given by,

Eµ1
=

∫

∞

0 Ψµ1
(r)

[

−
1
2

d2

dr2
−

e−αr

r
+ l(l+1)

2r2

]

Ψµ1
(r)dr

∫

∞

0 Ψµ1
(r)2dr

, (12)

The superpotential proposed as an ansatz for the V2(r) potential is,

W2(l+1)(r) = − (l + 1)
βe−βr

1− e−βr
+

1

l + 1
−

β

2
, (13)

and the corresponding eigenfunction for this superpotential becomes,

Ψ02(r) =
(

1− e−βr
)l+1

e−( 1

l+1
−

β
2
)r. (14)

Again, assuming that the radial trial wave function is given by (14), we can replace β by

the variational parameter µ2, and get,
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Ψµ2
(r) =

(

1− e−µ2r
)l+1

e−( 1

l+1
−

µ2
2
)r. (15)

The variational energy is given by,

Eµ2
=

∫

∞

0 Ψµ2
(r)

[

−
1
2

d2

dr2
−

e−βr

r
+ l(l+1)

2r2

]

Ψµ2
(r)dr

∫

∞

0 Ψµ2
(r)2dr

, (16)

Thus, by minimizing the energies Eµ1
and Eµ2

with respect to the variational parameter µ1

and µ2, one obtains the best estimate for the energy of the exponential-screened Coulomb

potential.

As the exponential-cosine screened Coulomb potential is not exactly solvable, the superpo-

tentials given by Eqs.(9) and (13) do not satisfy the Riccati equation, but they do satisfy

for effective potentials instead, V1eff and V2eff as,

V1eff (r) =
W̄ 2

1 − W̄ ′1

2
+ E(µ̄1). (17)

and

V2eff (r) =
W̄ 2

2 − W̄ ′2

2
+ E(µ̄2), (18)

where W̄1 = W1(α = µ̄1) and W̄2 = W2(β = µ̄2). µ̄1 and µ̄2 are the parameters that

minimize the energy expectation values (12) and (16). They are given by,

V1eff (r) = −
αe−αr

1− e−αr
+

l(l + 1)

2

α2e−2αr

(1− e−αr)2
+

1

2
(

1

l + 1
−

α

2
)2 + E(α), (19)

and

V2eff (r) = −
βe−βr

1 − e−βr
+

l(l + 1)

2

β2e−2βr

(1− e−βr)2
+

1

2
(

1

l + 1
−

β

2
)2 + E(β), (20)
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By substituting the values of α and β in (19) and (20), one can obtain the bound state

energies of the exponential-cosine screened Coulomb potential as,

E = −
q

2

[

1

(l + 1)2
+

λ2
− µ2

4
−

λ

l + 1

]

. (21)

It is interesting to notice that for µ = 0, the exponential-cosine screened Coulomb potential

reduces to the to the form called Yukawa potential and that Eq.(21) reduces to,

E = −
q

2

[

1

(l + 1)
−

λ

2

]2

. (22)

4 Non-PT -symmetric and non-Hermitian exponential-

cosine screened Coulomb case

The non-PT and non-Hermitian cosine screened Coulomb potential can be defined as,

V (r) =
iq

r
e−λr cos(µr). (23)

or simply,

V (r) =
iq

2
(
e−αr

r
+

e−βr

r
). (24)

In this case the proposed superpotentials can be,

W1(l+1)(r) = − (l + 1)
iαe−αr

1− e−αr
+

1

l + 1
−

α

2
. (25)

and

7



W2(l+1)(r) = − (l + 1)
iβe−βr

1− e−βr
+

1

l + 1
−

β

2
, (26)

Though the superpotentials are complex, following the same method will yield the same

energy eigenvalues as in (21).

5 PT -symmetric and non-Hermitian exponential-cosine

screened Coulomb case

The PT symmetric and non-Hermitian cosine screened Coulomb potential can be intro-

duced as,

V (r) = −
q

r
e−iλr cos(µr). (27)

or,

V (r) = −
q

2

[

e−i(λ−µ)r + e−i(λ+µ)r

r

]

. (28)

Taking, (λ− µ) = −α0 and λ+ µ = β0, we will have,

V (r) = −
q

2
(
e−iα0r

r
+

e−iβ0r

r
), (29)

and as a result the superpotentials can be proposed as,

W1(l+1)(r) = − (l + 1)
α0e

−iα0r

1− e−iα0r
+

1

l + 1
−

α0

2
. (30)

and

W2(l+1)(r) = − (l + 1)
β0e

−iβ0r

1− e−iβ0r
+

1

l + 1
−

β0

2
, (31)

In conclusion, by applying the method the same energy eigenvalues will be obtained as in

(21).
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6 Conclusions and remarks

We have applied the the Hamiltonian hierarchy method within the framework of the

SUSYQM formulation by presenting a superpotential that yields a trial function to calculate

the approximate bound state energies and corresponding eigenfunctions for the exponential-

cosine screened Coulomb potential. We have also considered its different symmetric forms

in our calculations. As the energy spectrum of the PT -invariant complex-valued non-

Hermitian potentials may be real or complex depending on the parameters, we have clarified

that there are some restrictions on the potential parameters for the bound states in PT -

symmetric, or more generally, in non-Hermitian quantum mechanics. Furthermore, it is

shown that the superpotentials, their superpartners and the corresponding ground state

eigenfunctions satisfy the PT -symmetry condition.

Finally, we can add that our approximate yet accurate results of complexified exponential-

cosine screened Coulomb potential by the justification of the numerical results presented in

Table 1 motivate an appropriate approach to analyze the exactly and non-exactly solvable

potentials. We believe that this method may increase the number of applications in the

study of different quantum systems.
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Table 1 : Energy eigenvalues of ECSC as a function of the screening parameter λ for 1s,

2p, 3d and 4f states in Rydberg units of energy.

State 1s
Screening

λ
SUSYQM
Our Work

Hypervirial
Solution [40 ]

NR−QM
Variational [20 ]

Exact
Numerical [39 ]

0.020 -0.480290 -0.480310 -0.480300 -0.480300

0.050 -0.451810 -0.451800 -0.451820 -0.451800

0.080 -0.424560 -0.424560 -0.424570 ———

0.100 -0.407070 -0.407050 -0.470600 -0.407100

State 2p

0.020 -0.211800 -0.105890 -0.211900 -0.211900

0.050 -0.162500 -0.080400 -0.161500 ———

0.080 -0.050500 -0.046000 ——— ———

0.100 -0.092860 -0.008000 -0.092890 -0.093070

State 3d

0.020 -0.075020 -0.037500 -0.075030 -0.075030

0.050 -0.033620 -0.017340 -0.033740 -0.033830

0.080 -0.009020 -0.008000 ——— ———

0.100 -0.038889 ——— ——— ———

State 4f

0.020 -0.028750 -0.014700 -0.028970 ———

0.050 -0.004100 -0.003200 ——— ———

0.080 -0.184500 -0.175000 ——— ———

0.100 -0.018700 ——— ——— ———
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