7,769 research outputs found
Growing Hair on the extremal black hole
We show that the nonlinear model in an asymptotically
space-time admits a novel local symmetry. The field action is assumed to be
quartic in the nonlinear model fields and minimally coupled to
gravity. The local symmetry transformation simultaneously twists the nonlinear
model fields and changes the space-time metric, and it can be used to
map an extremal black hole to infinitely many hairy black hole solutions.Comment: 11 pages, 1 figure, minor corrections include
Comparative study of spinning field development in two species of araneophagic spiders (Araneae, Mimetidae, Australomimetus)
External studies of spider spinning fields allow us to make inferences about internal silk gland biology, including what happens to silk glands when the spider molts. Such studies often focus on adults, but juveniles can provide additional insight on spinning apparatus development and character polarity. Here we document and describe spinning fields at all stadia in two species of pirate spider (Mimetidae: Australomimetus spinosus, A. djuka). Pirate spiders nest within the ecribellate orb-building spiders (Araneoidea), but are vagrant, araneophagic members that do not build prey-capture webs. Correspondingly, they lack aggregate and flagelliform silk glands (AG, FL), specialized for forming prey-capture lines in araneoid orb webs. However, occasional possible vestiges of an AG or FL spigot, as observed in one juvenile A. spinosus specimen, are consistent with secondary loss of AG and FL. By comparing spigots from one stadium to tartipores from the next stadium, silk glands can be divided into those that are tartipore-accommodated (T-A), and thus functional during proecdysis, and those that are not (non-T-A). Though evidence was more extensive in A. spinosus, it was likely true for both species that the number of non-T-A piriform silk glands (PI) was constant (two pairs) through all stadia, while numbers of T-A PI rose incrementally. The two species differed in that A. spinosus had T-A minor ampullate and aciniform silk glands (MiA, AC) that were absent in A. djuka. First instars of A. djuka, however, appeared to retain vestiges of T-A MiA spigots, consistent with a plesiomorphic state in which T-A MiA (called secondary MiA) are present. T-A AC have not previously been observed in Australomimetus and the arrangement of their spigots on posterior lateral spinnerets was unlike that seen thus far in other mimetid genera. Though new AC and T-A PI apparently form throughout much of a spider’s ontogeny, recurring spigot/tartipore arrangements indicated that AC and PI, after functioning during one stadium, were used again in each subsequent stadium (if non-T-A) or in alternate subsequent stadia (if T-A). In A. spinosus, sexual and geographic dimorphisms involving AC were noted. Cylindrical silk gland (CY) spigots were observed in mid-to-late juvenile, as well as adult, females of both species. Their use in juveniles, however, should not be assumed and only adult CY spigots had wide openings typical of mimetids. Neither species exhibited two pairs of modified PI spigots present in some adult male mimetids
Perturbations in the Kerr-Newman Dilatonic Black Hole Background: I. Maxwell waves
In this paper we analyze the perturbations of the Kerr-Newman dilatonic black
hole background. For this purpose we perform a double expansion in both the
background electric charge and the wave parameters of the relevant quantities
in the Newman-Penrose formalism. We then display the gravitational, dilatonic
and electromagnetic equations, which reproduce the static solution (at zero
order in the wave parameter) and the corresponding wave equations in the Kerr
background (at first order in the wave parameter and zero order in the electric
charge). At higher orders in the electric charge one encounters corrections to
the propagations of waves induced by the presence of a non-vanishing dilaton.
An explicit computation is carried out for the electromagnetic waves up to the
asymptotic form of the Maxwell field perturbations produced by the interaction
with dilatonic waves. A simple physical model is proposed which could make
these perturbations relevant to the detection of radiation coming from the
region of space near a black hole.Comment: RevTeX, 36 pages in preprint style, 1 figure posted as a separate PS
file, submitted to Phys. Rev.
Business Incubators: Creation of a Fit in Armenia
In this paper, we evaluate the extent to which business incubation services meet tenant’s needs. Additionally, we pose the question of whether the current business incubators actually cover the needs of a particular industry. Our empirical setting is a developing country in the Caucasian Region (Armenia) and we chose to research solely the IT industry. We employed a two stage procedure: first, we conducted interviews with pivotal people familiar with business incubation in Armenia; second, an electronic questionnaire survey was sent to the entire Armenian IT population. The results suggest a moderate need of IT companies for the typical business incubation services. Further, we show that incubated companies are generally satisfied with the services they enjoy albeit this satisfaction level decreases as the needs increase. Non-incubated companies, on the other hand, perceive incubation services to be valuable for their development and this value increases when their needs increase. Our study implies that a more extensive service provision is necessary to fully cover the needs of the Armenian IT industry for business incubation services
Quantum-Noise Power Spectrum of Fields with Discrete Classical Components
We present an algorithmic approach to calculate the quantum-noise spectral
density of photocurrents generated by optical fields with arbitrary discrete
classical spectrum in coherent or squeezed states. The measurement scheme may
include an arbitrary number of demodulations of the photocurrent. Thereby, our
method is applicable to the general heterodyne detection scheme which is
implemented in many experiments. For some of these experiments, e.g. in
laser-interferometric gravitational-wave detectors, a reliable prediction of
the quantum noise of fields in coherent and squeezed states plays a decisive
role in the design phase and detector characterization. Still, our
investigation is limited in two ways. First, we only consider coherent and
squeezed states of the field and second, we demand that the photocurrent
depends linearly on the field's vacuum amplitudes which means that at least one
of the classical components is comparatively strong.Comment: 8 pages, 2 figure
Can black holes and naked singularities be detected in accelerators?
We study the conditions for the existence of black holes that can be produced
in colliders at TeV-scale if the space-time is higher dimensional. On employing
the microcanonical picture, we find that their life-times strongly depend on
the details of the model. If the extra dimensions are compact (ADD model),
microcanonical deviations from thermality are in general significant near the
fundamental TeV mass and tiny black holes decay more slowly than predicted by
the canonical expression, but still fast enough to disappear almost
instantaneously. However, with one warped extra dimension (RS model),
microcanonical corrections are much larger and tiny black holes appear to be
(meta)stable. Further, if the total charge is not zero, we argue that naked
singularities do not occur provided the electromagnetic field is strictly
confined on an infinitely thin brane. However, they might be produced in
colliders if the effective thickness of the brane is of the order of the
fundamental length scale (~1/TeV).Comment: 6 pages, RevTeX 3, 1 figure and 1 table, important changes and
addition
New perturbative solutions of the Kerr-Newman dilatonic black hole field equations
This work describes new perturbative solutions to the classical,
four-dimensional Kerr--Newman dilaton black hole field equations. Our solutions
do not require the black hole to be slowly rotating. The unperturbed solution
is taken to be the ordinary Kerr solution, and the perturbation parameter is
effectively the square of the charge-to-mass ratio of the
Kerr--Newman black hole. We have uncovered a new, exact conjugation (mirror)
symmetry for the theory, which maps the small coupling sector to the strong
coupling sector (). We also calculate the gyromagnetic ratio of
the black hole.Comment: Revtex, 27 page
Microfield Dynamics of Black Holes
The microcanonical treatment of black holes as opposed to the canonical
formulation is reviewed and some major differences are displayed. In particular
the decay rates are compared in the two different pictures.Comment: 22 pages, 4 figures, Revtex, Minor change in forma
Characterization of active layer water contents in the McMurdo Sound region, Antarctica
The liquid soil water contents in the seasonally thawed layer (active layer) were characterized from seven soil climate monitoring sites - four coastal sites from south to north (Minna Bluff, Scott Base, Marble Point and Granite Harbour), and inland sites from low to high altitude (Wright Valley, Victoria Valley and Mount Fleming). Mean water contents ranged from 0.013 m³ m⁻³ near the surface at Victoria Valley to 0.013 m³ m⁻³ near the ice-cemented layer at Granite Harbour. The coastal sites have greater soil water contents than the McMurdo Dry Valley and Mount Fleming sites, and moisture contents increase with depth in the active layer. The Wright Valley site receives very little infiltration from snowmelt, with none in most years. All other sites, except Mount Fleming, received between one and four wetting events per summer, and infiltrated water moved to greater depths (≈ 10–25 cm). The Scott Base and Granite Harbour sites are on sloping ground and receive a subsurface flow of water along the ice-cemented permafrost. Our findings indicate that water contents are low with very little recharge, are greatly influenced by the local microclimate and topography, and show no significant increasing or decreasing trend over 10 years of monitoring
- …