We present an algorithmic approach to calculate the quantum-noise spectral
density of photocurrents generated by optical fields with arbitrary discrete
classical spectrum in coherent or squeezed states. The measurement scheme may
include an arbitrary number of demodulations of the photocurrent. Thereby, our
method is applicable to the general heterodyne detection scheme which is
implemented in many experiments. For some of these experiments, e.g. in
laser-interferometric gravitational-wave detectors, a reliable prediction of
the quantum noise of fields in coherent and squeezed states plays a decisive
role in the design phase and detector characterization. Still, our
investigation is limited in two ways. First, we only consider coherent and
squeezed states of the field and second, we demand that the photocurrent
depends linearly on the field's vacuum amplitudes which means that at least one
of the classical components is comparatively strong.Comment: 8 pages, 2 figure