289 research outputs found
Combinatorial–computational–chemoinformatics (C3) approach to finding and analyzing low-energy tautomers
Finding the most stable tautomer or a set of low-energy tautomers of molecules is critical in many aspects of molecular modelling or virtual screening experiments. Enumeration of low-energy tautomers of neutral molecules in the gas-phase or typical solvents can be performed by applying available organic chemistry knowledge. This kind of enumeration is implemented in a number of software packages and it is relatively reliable. However, in esoteric cases such as charged molecules in uncommon, non-aqueous solvents there is simply not enough available knowledge to make reliable predictions of low energy tautomers. Over the last few years we have been developing an approach to address the latter problem and we successfully applied it to discover the most stable anionic tautomers of nucleic acid bases that might be involved in the process of DNA damage by low-energy electrons and in charge transfer through DNA. The approach involves three steps: (1) combinatorial generation of a library of tautomers, (2) energy-based screening of the library using electronic structure methods, and (3) analysis of the information generated in step (2). In steps 1–3 we employ combinatorial, computational and chemoinformatics techniques, respectively. Therefore, this hybrid approach is named “Combinatorial*Computational*Chemoinformatics”, or just abbreviated as C3 (or C-cube) approach. This article summarizes our developments and most interesting methodological aspects of the C3 approach. It can serve as an example how to identify the most stable tautomers of molecular systems for which common chemical knowledge had not been sufficient to make definite predictions
Tunable porosity through cooperative diffusion in a multicomponent porous molecular crystal
Mild hydration of didecyldimethylammonium chloride modified DNA by 1H-nuclear magnetic resonance and by sorption isotherm
The gaseous phase hydration of deoxyribonucleic acid and didecyldimethylammonium chloride (C19H42ClN) complexes (DNA-DDCA) was observed using hydration kinetics, sorption isotherm, and high power nuclear magnetic resonance. Three bound water fractions were distinguished: (i) a very tightly bound water not removed by incubation over silica gel, (ii) a tightly bound water saturating with the hydration time t(1)(h) (0.596 +/- 0.04) h, and a loosely bound water fraction, (iii) with the hydration time t(2)(h) (20.9 +/- 1.3) h. Proton free induction decay was decomposed into the signal associated with the solid matrix of DNA-DDCA complex (T-2S approximate to 30 mu s) and two liquid signal components coming from tightly bound (T-2L1 approximate to 100 mu s) and from loosely bound water fraction (T-2L2 approximate to 1000 mu s)
Fluorescence Efficiency and Visible Re-emission Spectrum of Tetraphenyl Butadiene Films at Extreme Ultraviolet Wavelengths
A large number of current and future experiments in neutrino and dark matter
detection use the scintillation light from noble elements as a mechanism for
measuring energy deposition. The scintillation light from these elements is
produced in the extreme ultraviolet (EUV) range, from 60 - 200 nm. Currently,
the most practical technique for observing light at these wavelengths is to
surround the scintillation volume with a thin film of Tetraphenyl Butadiene
(TPB) to act as a fluor. The TPB film absorbs EUV photons and reemits visible
photons, detectable with a variety of commercial photosensors. Here we present
a measurement of the re-emission spectrum of TPB films when illuminated with
128, 160, 175, and 250 nm light. We also measure the fluorescence efficiency as
a function of incident wavelength from 120 to 250 nm.Comment: 15 pages, 9 figures, Submitted to Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipmen
Precise 3D track reconstruction algorithm for the ICARUS T600 liquid argon time projection chamber detector
Liquid Argon Time Projection Chamber (LAr TPC) detectors offer charged
particle imaging capability with remarkable spatial resolution. Precise event
reconstruction procedures are critical in order to fully exploit the potential
of this technology. In this paper we present a new, general approach of
three-dimensional reconstruction for the LAr TPC with a practical application
to track reconstruction. The efficiency of the method is evaluated on a sample
of simulated tracks. We present also the application of the method to the
analysis of real data tracks collected during the ICARUS T600 detector
operation with the CNGS neutrino beam.Comment: Submitted to Advances in High Energy Physic
Search for anomalies in the {\nu}e appearance from a {\nu}{\mu} beam
We report an updated result from the ICARUS experiment on the search for
{\nu}{\mu} ->{\nu}e anomalies with the CNGS beam, produced at CERN with an
average energy of 20 GeV and travelling 730 km to the Gran Sasso Laboratory.
The present analysis is based on a total sample of 1995 events of CNGS neutrino
interactions, which corresponds to an almost doubled sample with respect to the
previously published result. Four clear {\nu}e events have been visually
identified over the full sample, compared with an expectation of 6.4 +- 0.9
events from conventional sources. The result is compatible with the absence of
additional anomalous contributions. At 90% and 99% confidence levels the limits
to possible oscillated events are 3.7 and 8.3 respectively. The corresponding
limit to oscillation probability becomes consequently 3.4 x 10-3 and 7.6 x 10-3
respectively. The present result confirms, with an improved sensitivity, the
early result already published by the ICARUS collaboration
A search for the analogue to Cherenkov radiation by high energy neutrinos at superluminal speeds in ICARUS
The OPERA collaboration has claimed evidence of superluminal {\nu}{_\mu}
propagation between CERN and the LNGS. Cohen and Glashow argued that such
neutrinos should lose energy by producing photons and e+e- pairs, through Z0
mediated processes analogous to Cherenkov radiation. In terms of the parameter
delta=(v^2_nu-v^2_c)/v^2_c, the OPERA result implies delta = 5 x 10^-5. For
this value of \delta a very significant deformation of the neutrino energy
spectrum and an abundant production of photons and e+e- pairs should be
observed at LNGS. We present an analysis based on the 2010 and part of the 2011
data sets from the ICARUS experiment, located at Gran Sasso National Laboratory
and using the same neutrino beam from CERN. We find that the rates and
deposited energy distributions of neutrino events in ICARUS agree with the
expectations for an unperturbed spectrum of the CERN neutrino beam. Our results
therefore refute a superluminal interpretation of the OPERA result according to
the Cohen and Glashow prediction for a weak current analog to Cherenkov
radiation. In particular no superluminal Cherenkov like e+e- pair or gamma
emission event has been directly observed inside the fiducial volume of the
"bubble chamber like" ICARUS TPC-LAr detector, setting the much stricter limit
of delta < 2.5 10^-8 at the 90% confidence level, comparable with the one due
to the observations from the SN1987A.Comment: 17 pages, 6 figure
Search for anomalies in the neutrino sector with muon spectrometers and large LArTPC imaging detectors at CERN
A new experiment with an intense ~2 GeV neutrino beam at CERN SPS is proposed
in order to definitely clarify the possible existence of additional neutrino
states, as pointed out by neutrino calibration source experiments, reactor and
accelerator experiments and measure the corresponding oscillation parameters.
The experiment is based on two identical LAr-TPCs complemented by magnetized
spectrometers detecting electron and muon neutrino events at Far and Near
positions, 1600 m and 300 m from the proton target, respectively. The ICARUS
T600 detector, the largest LAr-TPC ever built with a size of about 600 ton of
imaging mass, now running in the LNGS underground laboratory, will be moved at
the CERN Far position. An additional 1/4 of the T600 detector (T150) will be
constructed and located in the Near position. Two large area spectrometers will
be placed downstream of the two LAr-TPC detectors to perform charge
identification and muon momentum measurements from sub-GeV to several GeV
energy range, greatly complementing the physics capabilities. This experiment
will offer remarkable discovery potentialities, collecting a very large number
of unbiased events both in the neutrino and antineutrino channels, largely
adequate to definitely settle the origin of the observed neutrino-related
anomalies.Comment: Contribution to the European Strategy for Particle Physics - Open
Symposium Preparatory Group, Kracow 10-12 September 201
Experimental search for the LSND anomaly with the ICARUS detector in the CNGS neutrino beam
We report an early result from the ICARUS experiment on the search for nu_mu
to nu_e signal due to the LSND anomaly. The search was performed with the
ICARUS T600 detector located at the Gran Sasso Laboratory, receiving CNGS
neutrinos from CERN at an average energy of about 20 GeV, after a flight path
of about 730 km. The LSND anomaly would manifest as an excess of nu_e events,
characterized by a fast energy oscillation averaging approximately to
sin^2(1.27 Dm^2_new L/ E_nu) = 1/2. The present analysis is based on 1091
neutrino events, which are about 50% of the ICARUS data collected in 2010-2011.
Two clear nu_e events have been found, compared with the expectation of 3.7 +/-
0.6 events from conventional sources. Within the range of our observations,
this result is compatible with the absence of a LSND anomaly. At 90% and 99%
confidence levels the limits of 3.4 and 7.3 events corresponding to oscillation
probabilities of 5.4 10^-3 and 1.1 10^-2 are set respectively. The result
strongly limits the window of open options for the LSND anomaly to a narrow
region around (Dm^2, sin^2(2 theta))_new = (0.5 eV^2, 0.005), where there is an
overall agreement (90% CL) between the present ICARUS limit, the published
limits of KARMEN and the published positive signals of LSND and MiniBooNE
Collaborations.Comment: 10 pages, 7 figure
Underground operation of the ICARUS T600 LAr-TPC: first results
Open questions are still present in fundamental Physics and Cosmology, like
the nature of Dark Matter, the matter-antimatter asymmetry and the validity of
the particle interaction Standard Model. Addressing these questions requires a
new generation of massive particle detectors exploring the subatomic and
astrophysical worlds. ICARUS T600 is the first large mass (760 ton) example of
a novel detector generation able to combine the imaging capabilities of the old
famous "bubble chamber" with an excellent energy measurement in huge electronic
detectors. ICARUS T600 now operates at the Gran Sasso underground laboratory,
studying cosmic rays, neutrino oscillation and proton decay. Physical
potentialities of this novel telescope are presented through few examples of
neutrino interactions reconstructed with unprecedented details. Detector design
and early operation are also reported.Comment: 14 pages, 8 figures, 2 tables. Submitted to Jins
- …
