1,494 research outputs found

    Type II Supernovae: Model Light Curves and Standard Candle Relationships

    Full text link
    A survey of Type II supernovae explosion models has been carried out to determine how their light curves and spectra vary with their mass, metallicity, and explosion energy. The presupernova models are taken from a recent survey of massive stellar evolution at solar metallicity supplemented by new calculations at subsolar metallicity. Explosions are simulated by the motion of a piston near the edge of the iron core and the resulting light curves and spectra are calculated using full multi-wavelength radiation transport. Formulae are developed that describe approximately how the model observables (light curve luminosity and duration) scale with the progenitor mass, explosion energy, and radioactive nucleosynthesis. Comparison with observational data shows that the explosion energy of typical supernovae (as measured by kinetic energy at infinity) varies by nearly an order of magnitude -- from 0.5 to 4.0 x 10^51 ergs, with a typical value of ~0.9 x 10^51 ergs. Despite the large variation, the models exhibit a tight relationship between luminosity and expansion velocity, similar to that previously employed empirically to make SNe IIP standardized candles. This relation is explained by the simple behavior of hydrogen recombination in the supernova envelope, but we find a sensitivity to progenitor metallicity and mass that could lead to systematic errors. Additional correlations between light curve luminosity, duration, and color might enable the use of SNe IIP to obtain distances accurate to ~20% using only photometric data.Comment: 12 pages, ApJ in pres

    La cultura digital en la formación de diseñadores

    Get PDF
    La sociedad de la información pone en jaque el modelo clásico, más aún en una profesión como el diseño, donde el papel de la técnica es muy grande. Si a esto sumamos la brecha generacional que esta revolución tecnológica ha producido, tendremos al menos dos componentes de tensión en el desarrollo del curriculum

    Properties of SN-host galaxies

    Full text link
    It is of prime importance to recognize evolution and extinction effects in supernovae results as a function of redshift, for SN Ia to be considered as distance indicators. This review surveys all observational data searching for an evolution and/or extinction, according to host morphology. For instance, it has been observed that high-z SNe Ia have bluer colours than the local ones: although this goes against extinction to explain why SN are dimmer with redshift until z ~ 1, supporting a decelerating universe, it also demonstrates intrinsic evolution effects. -- SNe Ia could evolve because the age and metallicity of their progenitors evolve. The main parameter is carbon abundance. Smaller C leads to a dimmer SN Ia and also less scatter on peak brightness, as it is the case in elliptical galaxy today. Age of the progenitor is an important factor: young populations lead to brighter SNe Ia, as in spiral galaxies, and a spread in ages lead to a larger scatter, explaining the observed lower scatter at high z. -- Selection biases also play a role, like the Malmquist bias; high-z SNe Ia are found at larger distance from their host center: there is more obscuration in the center, and also detection is easier with no contamination from the center. This might be one of the reason why less obscuration has been found for SNe Ia at high z. -- There is clearly a sample evolution with z: currently only the less bright SNe Ia are detected at high z, with less scatter. The brightest objects have a slowly declining light-curve, and at high z, no slow decline has been observed. This may be interpreted as an age effect, high-z SN having younger progenitors.Comment: 10 pages, 5 figures, review paper in "Supernovae and dust" (Paris, May 2003), to be published by New Astronomy Review

    Editorial

    Get PDF

    Type II Supernovae as Standardized Candles

    Get PDF
    We present evidence for a correlation between expansion velocities of the ejecta of Type II plateau supernovae and their bolometric luminosities during the plateau phase. This correlation permits one to standardize the candles and decrease the scatter in the Hubble diagram from ~1 mag to a level of 0.4 and 0.3 mag in the V and I bands, respectively. When we restrict the sample to the eight objects which are well in the Hubble flow (cz > 3,000 km/s) the scatter drops even further to only 0.2 mag (or 9% in distance), which is comparable to the precision yielded by Type Ia supernovae and far better than the ``expanding photosphere method'' applied to Type II supernovae. Using SN 1987A to calibrate the Hubble diagrams we get Ho=55+/-12.Comment: 9 pages, 3 figures, 1 table, accepted by ApJ

    Evidence for short-lived SN Ia progenitors

    Get PDF
    We use the VESPA algorithm and spectra from the Sloan Digital Sky Survey to investigate the star formation history of the host galaxies of 257 Type Ia supernovae. We find 5σ\sigma evidence for a short-lived population of progenitors with lifetimes of less than 180 Myr, indicating a Type Ia supernova channel arising from stars in the mass range \sim3.5-8 MM_\odot. As standardizeable candles, Type Ia supernovae play an important role in determining the expansion history of the Universe, but to be useful for future cosmological surveys, the peak luminosity needs to be free of uncorrected systematic effects at the level of 1-2%. If the different progenitor routes lead to supernovae with even moderately small differences in properties, then these need to be corrected for separately, or they could lead to a systematic bias in future supernovae surveys, as the prompt route is likely to increase in importance at high redshift. VESPA analysis of hosts could be a valuable tool in this, by identifying which progenitor route is most likely.Comment: Accepted version by the journal, no changes in the result
    corecore