8 research outputs found

    Single-strand nicks induce homologous recombination with less toxicity than double-strand breaks using an AAV vector template

    Get PDF
    Gene targeting by homologous recombination (HR) can be induced by double-strand breaks (DSBs), however these breaks can be toxic and potentially mutagenic. We investigated the I-AniI homing endonuclease engineered to produce only nicks, and found that nicks induce HR with both plasmid and adeno-associated virus (AAV) vector templates. The rates of nick-induced HR were lower than with DSBs (24-fold lower for plasmid transfection and 4- to 6-fold lower for AAV vector infection), but they still represented a significant increase over background (240- and 30-fold, respectively). We observed severe toxicity with the I-AniI ‘cleavase’, but no evidence of toxicity with the I-AniI ‘nickase.’ Additionally, the frequency of nickase-induced mutations at the I-AniI site was at least 150-fold lower than that induced by the cleavase. These results, and the observation that the surrounding sequence context of a target site affects nick-induced HR but not DSB-induced HR, strongly argue that nicks induce HR through a different mechanism than DSBs, allowing for gene correction without the toxicity and mutagenic activity of DSBs

    Du " modèle " de développement économique à une nouvelle forme de gouvernance métropolitaine ?

    Get PDF
    Consultable sur Internet : http://metropoles.revues.org/442#quotationNational audienceEntre mondialisation économique et diffusion des Nouvelles Technologies de l'Information et de Communication, la région métropolitaine de Bangalore connaît depuis une quinzaine d'années d'importantes mutations qui en font un laboratoire remarquable pour la communauté scientifique. Après avoir montré comment Bangalore est entrée dans une division internationale des tâches de production abstraite (économie de l'information), cet article analyse les transformations de la structure productive, de la géographie métropolitaine, des modes de vie et enfin de la manière dont la région urbaine est développée et aménagée. L'essor d'une classe moyenne enrichie et d'une élite économique encourage une convergence d'intérêts avec certains élus de l'Etat fédéré pour promouvoir une métropole " internationale " suivant un " modèle " d'urbanisation en enclave. On observe en bout de chaîne la formulation d'une nouvelle forme de gouvernance métropolitaine

    Malaria: targeting parasite and host cell kinomes

    No full text
    Malaria still remains one of the deadliest infectious diseases, and has a tremendous morbidity and mortality impact in the developing world. The propensity of the parasites to develop drug resistance, and the relative reluctance of the pharmaceutical industry to invest massively in the developments of drugs that would offer only limited marketing prospects, are major issues in antimalarial drug discovery. Protein kinases (PKs) have become a major family of targets for drug discovery research in a number of disease contexts, which has generated considerable resources such as kinase-directed libraries and high throughput kinase inhibition assays. The phylogenetic distance between malaria parasites and their human host translates into important divergences in their respective kinomes, and most Plasmodium kinases display atypical properties (as compared to mammalian PKs) that can be exploited towards selective inhibition. Here, we discuss the taxon-specific kinases possessed by malaria parasites, and give an overview of target PKs that have been validated by reverse genetics, either in the human malaria parasite Plasmodium falciparum or in the rodent model Plasmodium berghei. We also briefly allude to the possibility of attacking Plasmodium through the inhibition of human PKs that are required for survival of this obligatory intracellular parasite, and which are targets for other human diseases

    The ocular surface : a journal of review linking laboratory science, clinical science, and clinical practice

    Get PDF
    The role of protein phosphorylation in the life cycle of malaria parasites is slowly emerging. Here we combine global phospho-proteomic analysis with kinome-wide reverse genetics to assess the importance of protein phosphorylation in Plasmodium falciparum asexual proliferation. We identify 1177 phosphorylation sites on 650 parasite proteins that are involved in a wide range of general cellular activities such as DNA synthesis, transcription and metabolism as well as key parasite processes such as invasion and cyto-adherence. Several parasite protein kinases are themselves phosphorylated on putative regulatory residues, including tyrosines in the activation loop of PfGSK3 and PfCLK3; we show that phosphorylation of PfCLK3 Y526 is essential for full kinase activity. A kinome-wide reverse genetics strategy identified 36 parasite kinases as likely essential for erythrocytic schizogony. These studies not only reveal processes that are regulated by protein phosphorylation, but also define potential anti-malarial drug targets within the parasite kinome
    corecore