389 research outputs found

    A novel Chilean salmon fish backbone-based nanoHydroxyApatite functional biomaterial for potential use in bone tissue engineering

    Get PDF
    IntroductionGiven the ensuing increase in bone and periodontal diseases and defects, de novo bone repair and/or regeneration strategies are constantly undergoing-development alongside advances in orthopedic, oro-dental and cranio-maxillo-facial technologies and improvements in bio−/nano-materials. Indeed, there is a remarkably growing need for new oro-dental functional biomaterials that can help recreate soft and hard tissues and restore function and aesthetics of teeth/ dentition and surrounding tissues. In bone tissue engineering, HydroxyApatite minerals (HAp), the most stable CaP/Calcium Phosphate bioceramic and a widely-used material as a bone graft substitute, have been extensively studied for regenerative medicine and dentistry applications, including clinical use. Yet, limitations and challenges owing principally to its bio-mechanical strength, exist and therefore, research and innovation efforts continue to pursue enhancing its bio-effects, particularly at the nano-scale.MethodsHerein, we report on the physico-chemical properties of a novel nanoHydroxyApatite material obtained from the backbone of Salmon fish (patent-pending); an abundant and promising yet under-explored alternative HAp source. Briefly, our nanoS-HAp obtained via a modified and innovative alkaline hydrolysis–calcination process was characterized by X-ray diffraction, electron microscopy, spectroscopy, and a cell viability assay.Results and DiscussionWhen compared to control HAp (synthetic, human, bovine or porcine), our nanoS-HAp demonstrated attractive characteristics, a promising biomaterial candidate for use in bone tissue engineering, and beyond

    Cardiosphere-derived cells suppress allogeneic lymphocytes by production of PGE2 acting via the EP4 receptor

    Get PDF
    derived cells (CDCs) are a cardiac progenitor cell population, which have been shown to possess cardiac regenerative properties and can improve heart function in a variety of cardiac diseases. Studies in large animal models have predominantly focussed on using autologous cells for safety, however allogeneic cell banks would allow for a practical, cost-effective and efficient use in a clinical setting. The aim of this work was to determine the immunomodulatory status of these cells using CDCs and lymphocytes from 5 dogs. CDCs expressed MHC I but not MHC II molecules and in mixed lymphocyte reactions demonstrated a lack of lymphocyte proliferation in response to MHC-mismatched CDCs. Furthermore, MHC-mismatched CDCs suppressed lymphocyte proliferation and activation in response to Concanavalin A. Transwell experiments demonstrated that this was predominantly due to direct cell-cell contact in addition to soluble mediators whereby CDCs produced high levels of PGE2 under inflammatory conditions. This led to down-regulation of CD25 expression on lymphocytes via the EP4 receptor. Blocking prostaglandin synthesis restored both, proliferation and activation (measured via CD25 expression) of stimulated lymphocytes. We demonstrated for the first time in a large animal model that CDCs inhibit proliferation in allo-reactive lymphocytes and have potent immunosuppressive activity mediated via PGE2

    Iron deficiency was not the major cause of anemia in rural women of reproductive age in Sidama zone, southern Ethiopia: A cross-sectional study

    Get PDF
    Background Anemia, which has many etiologies, is a moderate/severe public health problem in young children and women of reproductive age in many developing countries. The aim of this study was to investigate prevalence of iron deficiency, anemia, and iron deficiency anemia using multiple biomarkers and to evaluate their association with food insecurity and food consumption patterns in non-pregnant women from a rural area of southern Ethiopia. Methods A cross-sectional study was conducted in 202 rural women of reproductive age in southern Ethiopia. Anthropometrics and socio-demographic data were collected. A venipuncture blood sample was analyzed for hemoglobin (Hb) and for biomarkers of iron status. Biomarkers were skewed and were log transformed before analysis. Mean, median, Pearson\u27s correlations and ordinary least-squares regressions were calculated. Results Median (IQR) Hb was 138 (127, 151) g/L. Based on an altitude-adjusted (1708 m) cutoff of 125 g/L for Hb, 21.3% were anemic. Plasma ferritin was \u3c15 μg/L in 18.6% of the women. Only one woman had α-1-acid glycoprotein (AGP) \u3e1.0 g/L; four women (2%) had \u3e 5 mg/L of C-reactive protein (CRP). Of the 43 women who were anemic, 23.3% (10 women) had depleted iron stores based on plasma ferritin. Three of these had elevated soluble transferring receptors (sTfR). Hemoglobin (Hb) concentration was negatively correlated with sTfR (r = -0.24, p = 0.001), and positively correlated with ferritin (r = 0.17, p = 0.018), plasma iron (r = 0.15, p = 0.046), transferrin saturation (TfS) (r = 0.15, p = 0.04) and body iron (r = 0.14, p = 0.05). Overall prevalence of iron deficiency anemia was only 5%. Conclusion Iron deficiency anemia was not prevalent in the study population, despite the fact that anemia would be classified as a moderate public health problem

    Secondary structure of rhBMP-2 in a protective biopolymeric carrier material

    Get PDF
    Efficient delivery of growth factors is one of the great challenges of tissue engineering. Polyelectrolyte multilayer films (PEM) made of biopolymers have recently emerged as an interesting carrier for delivering recombinant human bone morphogenetic protein 2 (rhBMP-2 noted here BMP-2) to cells in a matrix-bound manner. We recently showed that PEM made of poly(l-lysine) and hyaluronan (PLL/HA) can retain high and tunable quantities of BMP-2 and can deliver it to cells to induce their differentiation in osteoblasts. Here, we investigate quantitatively by Fourier transform infrared spectroscopy (FTIR) the secondary structure of BMP-2 in solution as well as trapped in a biopolymeric thin film. We reveal that the major structural elements of BMP-2 in solution are intramolecular β-sheets and unordered structures as well as α-helices. Furthermore, we studied the secondary structure of rhBMP-2 trapped in hydrated films and in dry films since drying is an important step for future applications of these bioactive films onto orthopedic biomaterials. We demonstrate that the structural elements were preserved when BMP-2 was trapped in the biopolymeric film in hydrated conditions and, to a lesser extent, in dry state. Importantly, its bioactivity was maintained after drying of the film. Our results appear highly promising for future applications of these films as coatings of biomedical materials, to deliver bioactive proteins while preserving their bioactivity upon storage in dry state.This work was supported by the French Ministry of Research through an ANR-EmergenceBIO grant (ANR-09-EBIO-012-01), by the European Commission (FP7 program) via a European Research Council starting grant (BIOMIM, GA 259370), and by GRAVIT (081012_FIBIOS). C.P. is grafetul to IUF for financial support

    Prevalence and molecular characterization of Glucose-6-Phosphate dehydrogenase deficient variants among the Kurdish population of Northern Iraq

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glucose-6-Phosphate dehydrogenase (G6PD) is a key enzyme of the pentose monophosphate pathway, and its deficiency is the most common inherited enzymopathy worldwide. G6PD deficiency is common among Iraqis, including those of the Kurdish ethnic group, however no study of significance has ever addressed the molecular basis of this disorder in this population. The aim of this study is to determine the prevalence of this enzymopathy and its molecular basis among Iraqi Kurds.</p> <p>Methods</p> <p>A total of 580 healthy male Kurdish Iraqis randomly selected from a main regional premarital screening center in Northern Iraq were screened for G6PD deficiency using methemoglobin reduction test. The results were confirmed by quantitative enzyme assay for the cases that showed G6PD deficiency. DNA analysis was performed on 115 G6PD deficient subjects, 50 from the premarital screening group and 65 unrelated Kurdish male patients with documented acute hemolytic episodes due to G6PD deficiency. Analysis was performed using polymerase chain reaction/restriction fragment length polymorphism for five deficient molecular variants, namely G6PD Mediterranean (563 C→T), G6PD Chatham (1003 G→A), G6PD A- (202 G→A), G6PD Aures (143 T→C) and G6PD Cosenza (1376 G→C), as well as the silent 1311 (C→T) mutation.</p> <p>Results</p> <p>Among 580 random Iraqi male Kurds, 63 (10.9%) had documented G6PD deficiency. Molecular studies performed on a total of 115 G6PD deficient males revealed that 101 (87.8%) had the G6PD Mediterranean variant and 10 (8.7%) had the G6PD Chatham variant. No cases of G6PD A-, G6PD Aures or G6PD Cosenza were identified, leaving 4 cases (3.5%) uncharacterized. Further molecular screening revealed that the silent mutation 1311 was present in 93/95 of the Mediterranean and 1/10 of the Chatham cases.</p> <p>Conclusions</p> <p>The current study revealed a high prevalence of G6PD deficiency among Iraqi Kurdish population of Northern Iraq with most cases being due to the G6PD Mediterranean and Chatham variants. These results are similar to those reported from neighboring Iran and Turkey and to lesser extent other Mediterranean countries.</p

    Molecular characterization of glucose-6-phosphate dehydrogenase deficiency in Jeddah, Kingdom of Saudi Arabia

    Get PDF
    International audienceABSTRACT: BACKGROUND: The development of polymerase chain reaction (PCR)-based methods for the detection of known mutations has facilitated detecting specific red blood cell (RBC) enzyme deficiencies. We carried out a study on glucose-6-phosphate dehydrogenase (G6PD) deficient subjects in Jeddah to evaluate the molecular characteristics of this enzyme deficiency and the frequency of nucleotide1311 and IVS-XI-93 polymorphisms in the glucose-6-phosphate dehydrogenase gene. RESULTS: A total of 1584 unrelated Saudis (984 neonates and 600 adults) were screened for glucose-6-phosphate dehydrogenase deficiency. The prevalence of glucose-6-phosphate dehydrogenase deficiency was 6.9% (n=110). G6PD Mediterranean mutation was observed in 98 (89.1%) cases, G6PD Aures in 11 (10.0%) cases, and G6PD Chatham in 1 (0.9%) case. None of the samples showed G6PD A mutation. Samples from 29 deficient subjects (25 males and 4 females) were examined for polymorphism. The association of two polymorphisms of exon/intron 11 (c.1311T/IVS XI 93C) was observed in 14 (42.4%) of 33 chromosomes studied. This association was found in 9 (31.0%) carriers of G6PD Mediterranean and in 4 (13.8%) carriers of G6PD Aures. CONCLUSIONS: The majority of mutations were G6PD Mediterranean, followed by G6PD Aures and <1% G6PD Chatham. We conclude that 1311T is a frequent polymorphism in subjects with G6PD Mediterranean and Aures variants in Jeddah

    Children with Moderate Acute Malnutrition with No Access to Supplementary Feeding Programmes Experience High Rates of Deterioration and No Improvement: Results from a Prospective Cohort Study in Rural Ethiopia

    Get PDF
    Background: Children with moderate acute malnutrition (MAM) have an increased risk of mortality, infections and impaired physical and cognitive development compared to well-nourished children. In parts of Ethiopia not considered chronically food insecure there are no supplementary feeding programmes (SFPs) for treating MAM. The short-term outcomes of children who have MAM in such areas are not currently described, and there remains an urgent need for evidence-based policy recommendations. Methods: We defined MAM as mid-upper arm circumference (MUAC) of ≥11.0cm and <12.5cm with no bilateral pitting oedema to include Ethiopian government and World Health Organisation cut-offs. We prospectively surveyed 884 children aged 6–59 months living with MAM in a rural area of Ethiopia not eligible for a supplementary feeding programme. Weekly home visits were made for seven months (28 weeks), covering the end of peak malnutrition through to the post-harvest period (the most food secure window), collecting anthropometric, socio-demographic and food security data. Results: By the end of the study follow up, 32.5% (287/884) remained with MAM, 9.3% (82/884) experienced at least one episode of SAM (MUAC <11cm and/or bilateral pitting oedema), and 0.9% (8/884) died. Only 54.2% of the children recovered with no episode of SAM by the end of the study. Of those who developed SAM half still had MAM at the end of the follow up period. The median (interquartile range) time to recovery was 9 (4–15) weeks. Children with the lowest MUAC at enrolment had a significantly higher risk of remaining with MAM and a lower chance of recovering. Conclusions: Children with MAM during the post-harvest season in an area not eligible for SFP experience an extremely high incidence of SAM and a low recovery rate. Not having a targeted nutrition-specific intervention to address MAM in this context places children with MAM at excessive risk of adverse outcomes. Further preventive and curative approaches should urgently be considered

    Data Stream Clustering for Real-Time Anomaly Detection: An Application to Insider Threats

    Get PDF
    Insider threat detection is an emergent concern for academia, industries, and governments due to the growing number of insider incidents in recent years. The continuous streaming of unbounded data coming from various sources in an organisation, typically in a high velocity, leads to a typical Big Data computational problem. The malicious insider threat refers to anomalous behaviour(s) (outliers) that deviate from the normal baseline of a data stream. The absence of previously logged activities executed by users shapes the insider threat detection mechanism into an unsupervised anomaly detection approach over a data stream. A common shortcoming in the existing data mining approaches to detect insider threats is the high number of false alarms/positives (FPs). To handle the Big Data issue and to address the shortcoming, we propose a streaming anomaly detection approach, namely Ensemble of Random subspace Anomaly detectors In Data Streams (E-RAIDS), for insider threat detection. E-RAIDS learns an ensemble of p established outlier detection techniques [Micro-cluster-based Continuous Outlier Detection (MCOD) or Anytime Outlier Detection (AnyOut)] which employ clustering over continuous data streams. Each model of the p models learns from a random feature subspace to detect local outliers, which might not be detected over the whole feature space. E-RAIDS introduces an aggregate component that combines the results from the p feature subspaces, in order to confirm whether to generate an alarm at each window iteration. The merit of E-RAIDS is that it defines a survival factor and a vote factor to address the shortcoming of high number of FPs. Experiments on E-RAIDS-MCOD and E-RAIDS-AnyOut are carried out, on synthetic data sets including malicious insider threat scenarios generated at Carnegie Mellon University, to test the effectiveness of voting feature subspaces, and the capability to detect (more than one)-behaviour-all-threat in real-time. The results show that E-RAIDS-MCOD reports the highest F1 measure and less number of false alarm = 0 compared to E-RAIDS-AnyOut, as well as it attains to detect approximately all the insider threats in real-time

    Cortical Thinning in Patients with Recent Onset Post-Traumatic Stress Disorder after a Single Prolonged Trauma Exposure

    Get PDF
    Most of magnetic resonance imaging (MRI) studies about post-traumatic stress disorder (PTSD) focused primarily on measuring of small brain structure volume or regional brain volume changes. There were rare reports investigating cortical thickness alterations in recent onset PTSD. Recent advances in computational analysis made it possible to measure cortical thickness in a fully automatic way, along with voxel-based morphometry (VBM) that enables an exploration of global structural changes throughout the brain by applying statistical parametric mapping (SPM) to high-resolution MRI. In this paper, Laplacian method was utilized to estimate cortical thickness after automatic segmentation of gray matter from MR images under SPM. Then thickness maps were analyzed by SPM8. Comparison between 10 survivors from a mining disaster with recent onset PTSD and 10 survivors without PTSD from the same trauma indicates cortical thinning in the left parietal lobe, right inferior frontal gyrus, and right parahippocampal gyrus. The regional cortical thickness of the right inferior frontal gyrus showed a significant negative correlation with the CAPS score in the patients with PTSD. Our study suggests that shape-related cortical thickness analysis may be more sensitive than volumetric analysis to subtle alteration at early stage of PTSD
    • …
    corecore