3,480 research outputs found

    Estimating Entropy of Liquids from Atom-Atom Radial Distribution Functions: Silica, Beryllium Fluoride and Water

    Full text link
    Molecular dynamics simulations of water, liquid beryllium fluoride and silica melt are used to study the accuracy with which the entropy of ionic and molecular liquids can be estimated from atom-atom radial distribution function data. All three systems are known to display similar liquid-state thermodynamic and kinetic anomalies due to a region of anomalous excess entropy behaviour where entropy rises on isothermal compression. The pair correlation entropy is demonstrated to be sufficiently accurate that the density-temperature regime of anomalous behaviour as well as the strength of the entropy anomaly can be predicted reliably for both ionic melts as well as different rigid-body pair potentials for water. Errors in the total thermodynamic entropy for ionic melts due to the pair correlation approximation are of the order of 10% or less for most state points but can be significantly larger in the anomalous regime at very low temperatures. In the case of water, as expected given the rigid-body constraints for a molecular liquids, the pair correlation approximation causes significantly larger errors, between 20 and 30%, for most state points. Comparison of the excess entropy, Se, of ionic melts with the pair correlation entropy, S2, shows that the temperature dependence of Se is well described by T ??2=5 scaling across both the normal and anomalous regimes, unlike in the case of S2. As a function of density, the Se(rho) curves shows only a single maximum while the S2(rho) curves show both a maximum and a minimum. These differences in the behaviour of S2 and Se are due to the fact that the residual multiparticle entropy, delta(S) = Se - S2, shows a strong negative correlation with tetrahedral order in the anomalous regime.Comment: 30 pages, 8 figure

    Treatment compliance and effectiveness of a cognitive behavioural intervention for low back pain : a complier average causal effect approach to the BeST data set

    Get PDF
    Background: Group cognitive behavioural intervention (CBI) is effective in reducing low-back pain and disability in comparison to advice in primary care. The aim of this analysis was to investigate the impact of compliance on estimates of treatment effect and to identify factors associated with compliance. Methods: In this multicentre trial, 701 adults with troublesome sub-acute or chronic low-back pain were recruited from 56 general practices. Participants were randomised to advice (control n = 233) or advice plus CBI (n = 468). Compliance was specified a priori as attending a minimum of three group sessions and the individual assessment. We estimated the complier average causal effect (CACE) of treatment. Results: Comparison of the CACE estimate of the mean treatment difference to the intention-to-treat (ITT) estimate at 12 months showed a greater benefit of CBI amongst participants compliant with treatment on the Roland Morris Questionnaire (CACE: 1.6 points, 95% CI 0.51 to 2.74; ITT: 1.3 points, 95% CI 0.55 to 2.07), the Modified Von Korff disability score (CACE: 12.1 points, 95% CI 6.07 to 18.17; ITT: 8.6 points, 95% CI 4.58 to 12.64) and the Modified von Korff pain score (CACE: 10.4 points, 95% CI 4.64 to 16.10; ITT: 7.0 points, 95% CI 3.26 to 10.74). People who were non-compliant were younger and had higher pain scores at randomisation. Conclusions: Treatment compliance is important in the effectiveness of group CBI. Younger people and those with more pain are at greater risk of non-compliance

    Invisible Diaspora?:English Ethnicity in the United States before 1920

    Get PDF
    The article presents an examination into the English population of the United States during the 19th and early 20th centuries, examining their ethnic identity as a diaspora community. Introductory details are given noting the relative lack of attention given to English Americans as an ethnic group. Topics addressed include reasons behind the invisibility of the English immigrant identity in the U.S., the existence of English ethnic organizations, and an overview of their activities

    Risk of hypoglycaemia with insulin degludec versus insulin glargine U300 in insulin-treated patients with type 2 diabetes : the randomised, head-to-head CONCLUDE trial

    Get PDF
    Aims/hypothesis A head-to-head randomised trial was conducted to evaluate hypoglycaemia safety with insulin degludec 200 U/ml (degludec U200) and insulin glargine 300 U/ml (glargine U300) in individuals with type 2 diabetes treated with basal insulin. Methods This randomised (1:1), open-label, treat-to-target, multinational trial included individuals with type 2 diabetes, aged ≥18 years with HbA1c ≤80 mmol/mol (9.5%) and BMI ≤45 kg/m2. Participants were previously treated with basal insulin with or without oral glucose-lowering drugs (excluding insulin secretagogues) and had to fulfil at least one predefined criterion for hypoglycaemia risk. Both degludec U200 and glargine U300 were similarly titrated to a fasting blood glucose target of 4.0–5.0 mmol/l. Endpoints were assessed during a 36 week maintenance period and a total treatment period up to 88 weeks. There were three hypoglycaemia endpoints: (1) overall symptomatic hypoglycaemia (either severe, an event requiring third-party assistance, or confirmed by blood glucose [<3.1 mmol/l] with symptoms); (2) nocturnal symptomatic hypoglycaemia (severe or confirmed by blood glucose with symptoms, between 00:01 and 05:59 h); and (3) severe hypoglycaemia. The primary endpoint was the number of overall symptomatic hypoglycaemic events in the maintenance period. Secondary hypoglycaemia endpoints included the number of nocturnal symptomatic events and number of severe hypoglycaemic events during the maintenance period. Results Of the 1609 randomised participants, 733 of 805 (91.1%) in the degludec U200 arm and 734 of 804 (91.3%) in the glargine U300 arm completed the trial (87.3% and 87.8% completed on treatment, respectively). Baseline characteristics were comparable between the two treatment arms. For the primary endpoint, the rate of overall symptomatic hypoglycaemia was not significantly lower with degludec U200 vs glargine U300 (rate ratio [RR] 0.88 [95% CI 0.73, 1.06]). As there was no significant difference between treatments for the primary endpoint, the confirmatory testing procedure for superiority was stopped. The pre-specified confirmatory secondary hypoglycaemia endpoints were analysed using pre-specified statistical models but were now considered exploratory. These endpoints showed a lower rate of nocturnal symptomatic hypoglycaemia (RR 0.63 [95% CI 0.48, 0.84]) and severe hypoglycaemia (RR 0.20 [95% CI 0.07, 0.57]) with degludec U200 vs glargine U300. Conclusions/interpretation There was no significant difference in the rate of overall symptomatic hypoglycaemia with degludec U200 vs glargine U300 in the maintenance period. The rates of nocturnal symptomatic and severe hypoglycaemia were nominally significantly lower with degludec U200 during the maintenance period compared with glargine U300

    Polycation-π Interactions Are a Driving Force for Molecular Recognition by an Intrinsically Disordered Oncoprotein Family

    Get PDF
    Molecular recognition by intrinsically disordered proteins (IDPs) commonly involves specific localized contacts and target-induced disorder to order transitions. However, some IDPs remain disordered in the bound state, a phenomenon coined "fuzziness", often characterized by IDP polyvalency, sequence-insensitivity and a dynamic ensemble of disordered bound-state conformations. Besides the above general features, specific biophysical models for fuzzy interactions are mostly lacking. The transcriptional activation domain of the Ewing's Sarcoma oncoprotein family (EAD) is an IDP that exhibits many features of fuzziness, with multiple EAD aromatic side chains driving molecular recognition. Considering the prevalent role of cation-π interactions at various protein-protein interfaces, we hypothesized that EAD-target binding involves polycation- π contacts between a disordered EAD and basic residues on the target. Herein we evaluated the polycation-π hypothesis via functional and theoretical interrogation of EAD variants. The experimental effects of a range of EAD sequence variations, including aromatic number, aromatic density and charge perturbations, all support the cation-π model. Moreover, the activity trends observed are well captured by a coarse-grained EAD chain model and a corresponding analytical model based on interaction between EAD aromatics and surface cations of a generic globular target. EAD-target binding, in the context of pathological Ewing's Sarcoma oncoproteins, is thus seen to be driven by a balance between EAD conformational entropy and favorable EAD-target cation-π contacts. Such a highly versatile mode of molecular recognition offers a general conceptual framework for promiscuous target recognition by polyvalent IDPs. © 2013 Song et al

    Palmitoylethanolamide exerts neuroprotective effects in mixed neuroglial cultures and organotypic hippocampal slices via peroxisome proliferator-activated receptor-α

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In addition to cytotoxic mechanisms directly impacting neurons, β-amyloid (Aβ)-induced glial activation also promotes release of proinflammatory molecules that may self-perpetuate reactive gliosis and damage neighbouring neurons, thus amplifying neuropathological lesions occurring in Alzheimer's disease (AD). Palmitoylethanolamide (PEA) has been studied extensively for its anti-inflammatory, analgesic, antiepileptic and neuroprotective effects. PEA is a lipid messenger isolated from mammalian and vegetable tissues that mimics several endocannabinoid-driven actions, even though it does not bind to cannabinoid receptors. Some of its pharmacological properties are considered to be dependent on the expression of peroxisome proliferator-activated receptors-α (PPARα).</p> <p>Findings</p> <p>In the present study, we evaluated the effect of PEA on astrocyte activation and neuronal loss in models of Aβ neurotoxicity. To this purpose, primary rat mixed neuroglial co-cultures and organotypic hippocampal slices were challenged with Aβ<sub>1-42 </sub>and treated with PEA in the presence or absence of MK886 or GW9662, which are selective PPARα and PPARγ antagonists, respectively. The results indicate that PEA is able to blunt Aβ-induced astrocyte activation and, subsequently, to improve neuronal survival through selective PPARα activation. The data from organotypic cultures confirm that PEA anti-inflammatory properties implicate PPARα mediation and reveal that the reduction of reactive gliosis subsequently induces a marked rebound neuroprotective effect on neurons.</p> <p>Conclusions</p> <p>In line with our previous observations, the results of this study show that PEA treatment results in decreased numbers of infiltrating astrocytes during Aβ challenge, resulting in significant neuroprotection. PEA could thus represent a promising pharmacological tool because it is able to reduce Aβ-evoked neuroinflammation and attenuate its neurodegenerative consequences.</p

    From wing to wing: the persistence of long ecological interaction chains in less-disturbed ecosystems

    Get PDF
    Human impact on biodiversity usually is measured by reduction in species abundance or richness. Just as important, but much more difficult to discern, is the anthropogenic elimination of ecological interactions. Here we report on the persistence of a long ecological interaction chain linking diverse food webs and habitats in the near-pristine portions of a remote Pacific atoll. Using biogeochemical assays, animal tracking, and field surveys we show that seabirds roosting on native trees fertilize soils, increasing coastal nutrients and the abundance of plankton, thus attracting manta rays to native forest coastlines. Partnered observations conducted in regions of this atoll where native trees have been replaced by human propagated palms reveal that this complex interaction chain linking trees to mantas readily breaks down. Taken together these findings provide a compelling example of how anthropogenic disturbance may be contributing to widespread reductions in ecological interaction chain length, thereby isolating and simplifying ecosystems

    Bi-allelic mutations in uncoordinated mutant number-45 myosin chaperone B are a cause for congenital myopathy

    Get PDF
    Congenital myopathies (CM) form a genetically heterogeneous group of disorders characterized by perinatal muscle weakness. Here, we report an 11-year old male offspring of consanguineous parents of Lebanese origin. He presented with proximal weakness including Gower's sign, and skeletal muscle biopsy revealed myopathic changes with core-like structures. Whole exome sequencing of this index patient lead to the discovery of a novel genetically defined CM subtype based on bi-allelic mutations in the uncoordinated mutant number-45 myosin chaperone B (UNC45B) NM_173167:c.2261G > A, p.Arg754Gln. The mutation is conserved in evolution and co-segregates within the pedigree with the phenotype, and located in the myosin binding armadillo repeat domain 3 (ARM3), and has a CADD Score of 35. On a multimeric level, UNC45B aggregates to a chain which serves as an assembly line and functions as a template defining the geometry, regularity, and periodicity of myosin arranged into muscle thick filaments. Our discovery is in line with the previously described myopathological phenotypes in C. elegans and in vertebrate mutants and knockdown-models. In conclusion, we here report for the first time a patient with an UNC45B mutation causing a novel genetically defined congenital myopathy disease entity

    SNAIL vs vitamin D receptor expression in colon cancer: therapeutics implications

    Get PDF
    Vitamin D analogues with reduced hypercalcemic activity are under clinical investigation for use against colon cancer and other neoplasias. However, only a subset of patients responds to this therapy, most probably due to loss of vitamin D receptor (VDR) expression during tumour progression. Recent data show that SNAIL transcription factor represses VDR expression, and thus abolishes the antiproliferative and prodifferentiation effects of VDR ligands in cultured cancer cells and their antitumour action in xenografted mice. Accordingly, upregulation of SNAIL in human colon tumours associates with downregulation of VDR. These findings suggest that SNAIL may be associated with loss of responsiveness to vitamin D analogues and may thus be used as an indicator of patients who are unlikely to respond to this therapy
    corecore