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CASE REPORT Open Access

Bi-allelic mutations in uncoordinated
mutant number-45 myosin chaperone B are
a cause for congenital myopathy
Hormos Salimi Dafsari1,2, Nur Mehpare Kocaturk1,2, Hülya-Sevcan Daimagüler1,2, Anna Brunn3, Jörg Dötsch1,4,
Joachim Weis5, Martina Deckert3 and Sebahattin Cirak1,2,4*

Abstract

Congenital myopathies (CM) form a genetically heterogeneous group of disorders characterized by perinatal muscle
weakness. Here, we report an 11-year old male offspring of consanguineous parents of Lebanese origin. He
presented with proximal weakness including Gower’s sign, and skeletal muscle biopsy revealed myopathic changes
with core-like structures. Whole exome sequencing of this index patient lead to the discovery of a novel genetically
defined CM subtype based on bi-allelic mutations in the uncoordinated mutant number-45 myosin chaperone B
(UNC45B) NM_173167:c.2261G > A, p.Arg754Gln. The mutation is conserved in evolution and co-segregates within
the pedigree with the phenotype, and located in the myosin binding armadillo repeat domain 3 (ARM3), and has a
CADD Score of 35. On a multimeric level, UNC45B aggregates to a chain which serves as an assembly line and
functions as a “template” defining the geometry, regularity, and periodicity of myosin arranged into muscle thick
filaments. Our discovery is in line with the previously described myopathological phenotypes in C. elegans and in
vertebrate mutants and knockdown–models. In conclusion, we here report for the first time a patient with an
UNC45B mutation causing a novel genetically defined congenital myopathy disease entity.

Text
Congenital myopathies (CM) form a genetically hetero-
geneous group of disorders characterized by perinatal
muscle weakness [18, 20]. Here, we report an 11-year
old male offspring of consanguineous parents of Leba-
nese origin. He presented with proximal weakness in-
cluding Gower’s sign, and skeletal muscle biopsy
revealed myopathic changes with core-like structures.
Genomic investigation of this index patient lead to the
discovery of a novel genetically defined CM subtype
based on bi-allelic mutations in the uncoordinated mu-
tant number-45 myosin chaperone B (UNC45B) gene.
Regarding medical history, the mother reported reduced
fetal movements during pregnancy. After birth, the pa-
tient presented as a floppy infant with feeding difficul-
ties, improving after the first year of life. He was able to

sit and walk independently at 10 and 20months of age,
respectively. Currently, his Gower’s time is >10s (Fig. 1b),
he is unable to run, shows a Trendelenburg sign (Add-
itional file 1: Figure S1h), he is overweight and has a
static disease course. He talks with a nasal voice without
chewing or swallowing difficulties. Facial weakness and
ophthalmoplegia are absent. While he had a reduced
forced vital capacity of 70%, his echocardiogram showed
a normal heart function. Serum creatinine kinase levels
were not elevated. For further clinical details, please see
Additional file 2: Supplementary Material.
At the age of 10 years, left femoral quadriceps muscle

biopsy showed myopathic changes, i.e., fiber size vari-
ability including hypertrophic and atrophic fibers and
central nuclei (Fig. 1c) with core-like lesions mainly in
the center of muscle fibers (Fig. 1d). Fiber type distribu-
tion was altered as type-2 fibers were virtually absent
(Fig. 1d, Additional file 1: Figure S1a). Small neonatal
myosin positive fibers indicated regeneration (Additional
file 1: Figure S1b). Electron microscopy unraveled nu-
merous core-like alterations of myofibrillary architecture
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Fig. 1 (See legend on next page.)
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with Z-band streaming (Fig. 1f). Some mitochondria
showed prominent matrix granula, globoidal inclusions,
and even paracristalline intramitochondrial inclusions
(Additional file 1: Figure S1f). We also observed subsar-
colemmal accumulations of organelles (Additional file 1:
Figure S1e).
To uncover underlying disease-causing mutations, we

performed whole-exome sequencing (WES) (Add-
itional file 2: Table S1 and Supplementary Material) [3].
By stringent filtering for various inheritance models
(Additional file 2: Table S2), the most likely autosomal-
recessive model in a consanguineous family let us to the
solution. Based on skeletal muscle expression levels
(Additional file 1: Figure S1 g) and previously reported
animal models [4, 9, 11, 13, 21], we consider a strictly
conserved homozygous base pair exchange in UNC45B
(NM_173167:c.2261G > A, p.Arg754Gln, Fig. 1g-j) in a
homozygous region as pathogenic. The variant leads to
an amino acid substitution with a change in polarity and
mass (dissimilarity 43 in Sneath’s index) in the armadillo
repeat domain 3 (ARM3), and is reported with a CADD
Score of 35. UNC45B is highly conserved and con-
strained against loss-of-function variants in the gnomAD
population database (Additional file 2: Table S3). UNC-
45 proteins show a three-domain configuration, with an
N-terminal tetratricopeptide repeat (TPR) domain,
poorly conserved central domain, and a C-terminal UCS
domain (Unc45−/Cro1p−/She4p-related protein) [13].
Three consensus TPR repeats participate in protein-
protein interaction especially with Hsp70 and Hsp90
[17]. The C-terminal UCS domain has been shown to
form a putative myosin-binding groove, largely stabilized
by electrostatic interactions [6]. Our patient’s missense
mutation is located in the third ARM domain at residue
p.Arg754 at the C-terminal UCS region, which might ab-
rogate the interaction between UNC45B and myosin
heavy chain [19], thus impairing myofibrillogenesis
(Additional file 1: Figure S2d). Indeed, in-silico modeling

and docking studies of the human UNC45B protein
showed that the binding groove in the UCS domain is a
negatively-charged surface at the R18R19 helices of
UNC45B and serves as “place-holder” for the charged
loop-U and β-sheets residues of myosin (MYH7) [6].
The p.Arg754Gln mutation is actually found directly in
R18H1 [6, 12]. We calculated a change to a decreased
isoelectric point and lower net charge from wildtype to
p.Arg754Gln mutant in the R18-R19 residues at pH 7.4
by using the Prot-pi tool (Additional file 1: Figure S2c).
Notably, all three isoforms of UNC45B are highly

expressed in skeletal muscle and the p.Arg754Gln muta-
tion affects all isoforms (Additional file 1: Figure S2a,b),
only one of the three isoforms is highly expressed in car-
diac muscle. In a D. melanogaster model, an Unc-45
knockdown showed a severe cardiac phenotype with di-
lated cardiomyopathy and reduced muscle contractility
[15]. Unc-45b knockdown in zebrafish and also the steif/
unc-45b mutants resulted in paralysis and cardiac dys-
function based on severely disrupted myofibrillogenesis
[4, 21]. Therefore, our patient might develop cardiomy-
opathy at later ages. Knockdown of unc-45b severely af-
fected sarcomere organization including M- and Z-lines
of skeletal muscles of embryos [2].
From the essential physiological function of UNC45B in

muscle development, it can be deducted that deleterious
genetic variants may lead to myopathy. On a multimeric
level, UNC45B aggregates to a chain which serves as an
assembly line for beta (β)-myosin heavy chain, encoded by
MYH7 [1, 5], and functions as a “template” defining the
geometry, regularity, and periodicity of myosin arranged
into muscle thick filaments [16]. After myosin incorpo-
rates into thick filaments, Unc45b and Hsp90 dissociate
from myosin ensuring the proper myosin filament assem-
bly [15]. Once disassociated, UNC45B binds to a VCP co-
factor protein UFD-2 and an E3 ligase CHIP which leads
to poly-ubiquitylation of UNC45B and its subsequent pro-
teasomal degradation [10] (Additional file 1: Figure S2d).

(See figure on previous page.)
Fig. 1 Phenotypic, myopathological, and electron microscopical findings in our patient with an overview of the UNC45B variant identified in this
study. a Front and side view of our patient, showing hyperlordosis and obesity. b Gower’s sign in our patient. c Increased fiber size caliber
spectrum with internalized nuclei predominantly in hypertrophic muscle fibers (arrows) and atrophic muscle fibers (arrowheads). H&E staining,
original magnification × 400; scale bar 20 μm. d Disorganization of myofibrillary architecture evidenced by pale centers of muscle fibers
presenting as core-like structures. Enzyme histochemistry with NADH; original magnification × 400; scale bar 20 μm. e Focal myofibrillary
disintegration (arrows) and occasional non-subsarcolemmal muscle fiber nuclei. Semithin section, toluidine blue staining; scale bar 20 μm. f
Subsarcolemmal core-like structure and Z-band streaming in electron microscopy (EM). g Pedigree and chromatograms of the index patient,
healthy sisters, and healthy mother. The healthy father’s blood sample was unavailable for dideoxy sequencing. h UNC45B multiple sequence
alignment made with Jalview shows high evolutionary conservation at amino acid residue p.Arg754 (NP_775259.1 Homo sapiens, the mutated
sequence from our patient c.2261G > A p.Arg754Gln, XP_001174363.2 P. troglodytes, XP_0011113905.2 m. mulatta, XP_005624856.1 C. lupus,
XP_002695676.1 B. taurus, NP_848795.3 m. musculus, NP_001100498.1 R. norvegicus, XP_004946569.1 g. gallus, NP_705959.1 D. rerio,
NP_001172057.1 x. tropicalis, NP_524796.1 D. melanogaster, XP_310258.5 A. gambiae, and NP_497205.1 C. elegans). i Variant in the UNC45B gene
(NM_173167.3, 20 exons) identified in our patients and concomitant position in the j. UNC45B protein structure (Q8IWX7) based on 931-aa
isoform (ENST00000268876.9, NP_775259.1); pictogram with protein domains: Tetratricopeptide repeats (TPR, red) and Armadillo/beta-catenin-like
repeats (ARM, green), N-terminal region of protein in blue, central region (131–506) in white, UCS region (Unc45−/Cro1p−/She4p-related protein)
in red (507–931). Gene and protein sequences are drawn with the IBS Biocuckoo web server [14]
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Therefore, we hypothesize that our patient’s mutation
in UNC45B in the UCS domain might directly lead to
myofibrillogenesis failure (Additional file 1: Figure S2d).
Of note, a heterozygous missense variant in UNC45B
(c.2413C > T, p.Arg805Trp) has been reported to cause a
dominant form of glaucoma without further confirm-
ation since publication [8]. Noteworthy, there is a high
heterozygous allele carrier status of 18/272310 in gno-
mAD of this c.2413C > T variant in healthy adults.
In conclusion, we here report for the first time a

patient with an UNC45B mutation causing a novel gen-
etically defined congenital myopathy disease entity. Our
discovery is in line with the previously described myo-
pathological phenotypes in C. elegans and in vertebrate
mutants and knockdown–models [4, 7, 9, 11, 19].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40478-019-0869-1.

Additional file 1: Figure S1. Further myopathological, electron
microscopical and phenotypic findings in our patient with UNC45B
variant. Figure S2. Gene and isoform expression of UNC45B in various
tissues and a possible disease model scheme.

Additional file 2: Table S1. Detailed metrics of Whole Exome
Sequencing in our patient with coverage (1x, 2x, 10x, 20x, 30x, 100x,
mean). Table S2. Results of the variant filtering and the specific criteria
we applied on the dataset. Table S3. Prediction of pathogenicity for our
patient’s UNC45B variant via multiple scoring tools.
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