293 research outputs found

    Estimates of production rates of SUSY particles in ultra-relativistic heavy-ion collisions

    Get PDF
    We estimate the production rates of supersymmetric particles in central heavy-ion collisions at LHC. The parton cascade model is used to seek for possible collective phenomena which enlarge the production probability of very heavy particles. Even if there is some indication of such cooperative effects, higher energy and higher luminosity of proton beams at LHC disfavor heavy-ion reactions in the search for supersymmetric particles.Comment: 19 pages including 10 EPS figure

    Quantum Dot Potentials: Symanzik Scaling, Resurgent Expansions and Quantum Dynamics

    Get PDF
    This article is concerned with a special class of the ``double-well-like'' potentials that occur naturally in the analysis of finite quantum systems. Special attention is paid, in particular, to the so-called Fokker-Planck potential, which has a particular property: the perturbation series for the ground-state energy vanishes to all orders in the coupling parameter, but the actual ground-state energy is positive and dominated by instanton configurations of the form exp(-a/g), where a is the instanton action. The instanton effects are most naturally taken into account within the modified Bohr-Sommerfeld quantization conditions whose expansion leads to the generalized perturbative expansions (so-called resurgent expansions) for the energy values of the Fokker-Planck potential. Until now, these resurgent expansions have been mainly applied for small values of coupling parameter g, while much less attention has been paid to the strong-coupling regime. In this contribution, we compare the energy values, obtained by directly resumming generalized Bohr-Sommerfeld quantization conditions, to the strong-coupling expansion, for which we determine the first few expansion coefficients in powers of g^(-2/3). Detailed calculations are performed for a wide range of coupling parameters g and indicate a considerable overlap between the regions of validity of the weak-coupling resurgent series and of the strong-coupling expansion. Apart from the analysis of the energy spectrum of the Fokker-Planck Hamiltonian, we also briefly discuss the computation of its eigenfunctions. These eigenfunctions may be utilized for the numerical integration of the (single-particle) time-dependent Schroedinger equation and, hence, for studying the dynamical evolution of the wavepackets in the double-well-like potentials.Comment: 13 pages; RevTe

    Venous Leak Embolization in Patients with Venogenic Erectile Dysfunction via Deep Dorsal Penile Vein Access: Safety and Early Efficacy.

    Get PDF
    PURPOSE This all-comers registry aimed to assess safety and early efficacy of venous embolization in patients with venogenic erectile dysfunction due to venous leak in an unselected cohort. METHODS Between October 2019 and September 2022, patients with venogenic erectile dysfunction resistant to phosphodiesterase-5-inhibitors were treated with venous embolization using ultrasound-guided anterograde access via a deep dorsal penile vein in a single center. A mix of ethiodized oil and modified cyanoacrylate-based glue n-butyl 2 cyanoacrylate (NBCA) monomer plus methacryloxy-sulpholane monomer (Glubran-2, GEM, Italy) was used as liquid embolic agent. Prior to embolization, venous leak had been verified based on penile duplex sonography and computed tomography cavernosography. Procedural success was defined as technically successful and complete target vein embolization. The primary safety outcome measure was any major adverse event 6 weeks after the procedure. The primary feasibility outcome measure was IIEF-15 (International Index of Erectile Function-15) score improvement ≥ 4 points in ≥ 50% of subjects on 6 weeks follow-up post intervention. RESULTS Fifty consecutive patients (mean age 61.8 ± 10.0 years) with severe erectile dysfunction due to venous leak underwent venous embolization. Procedural success was achieved in 49/50 (98%) of patients with no major adverse events on follow-up. The primary feasibility outcome measure at 6 weeks was reached by 34/50 (68%) of patients. CONCLUSION Venous leak embolization via deep dorsal penile vein access using a liquid embolic agent was safe for all and efficacious in the majority of patients with severe venogenic erectile dysfunction on 6 weeks follow-up

    Formal comparison of SUSY in the nuclear U(6/2) model and in quantum field theory

    Get PDF
    A nuclear physics example of the U(6/2) supersymmetry group is considered. It is shown that this group contains a supersymmetric subgroup with a structure similar to the SUSY model of the quantum field theory (QFT). A comparison of two models help to clarify the relation between the supersymmetry schemes of QFT and of nuclear physics. Using this similarity a relation between the numbers of the bosonic and fermionic states similar to the fundamental relation in QFT is obtained. For those supermultiplets with at least two fermions the number of the bosonic and fermionic states are equal as in QFT.Comment: 11 pages and one eps-figure. Phys.Rev.C (1999) in pres

    Solvable three-state model of a driven double-well potential and coherent destruction of tunneling

    Get PDF
    A simple model for a particle in a double well is derived from discretizing its configuration space. The model contains as many free parameters as the original system and it respects all the existing symmetries. In the presence of an external periodic force both the continuous system and the discrete model are shown to possess a generalized time-reversal symmetry in addition to the known generalized parity. The impact of the driving force on the spectrum of the Floquet operator is studied. In particular, the occurrence of degenerate quasienergies causing coherent destruction of tunneling is discussed—to a large extent analytically—for arbitrary driving frequencies and barrier heights

    Expression of Protease-Activated Receptor 1 and 2 and Anti-Tubulogenic Activity of Protease-Activated Receptor 1 in Human Endothelial Colony-Forming Cells

    Get PDF
    Endothelial colony-forming cells (ECFCs) are obtained from the culture of human peripheral blood mononuclear cell (hPBMNC) fractions and are characterised by high proliferative and pro-vasculogenic potential, which makes them of great interest for cell therapy. Here, we describe the detection of protease-activated receptor (PAR) 1 and 2 amongst the surface proteins expressed in ECFCs. Both receptors are functionally coupled to extracellular signal-regulated kinase (ERK) 1 and 2, which become activated and phosphorylated in response to selective PAR1- or PAR2-activating peptides. Specific stimulation of PAR1, but not PAR2, significantly inhibits capillary-like tube formation by ECFCs in vitro, suggesting that tubulogenesis is negatively regulated by proteases able to stimulate PAR1 (e.g. thrombin). The activation of ERKs is not involved in the regulation of tubulogenesis in vitro, as suggested by use of the MEK inhibitor PD98059 and by the fact that PAR2 stimulation activates ERKs without affecting capillary tube formation. Both qPCR and immunoblotting showed a significant downregulation of vascular endothelial growth factor 2 (VEGFR2) in response to PAR1 stimulation. Moreover, the addition of VEGF (50–100 ng/ml) but not basic Fibroblast Growth Factor (FGF) (25–100 ng/ml) rescued tube formation by ECFCs treated with PAR1-activating peptide. Therefore, we propose that reduction of VEGF responsiveness resulting from down-regulation of VEGFR2 is underlying the anti-tubulogenic effect of PAR1 activation. Although the role of PAR2 remains elusive, this study sheds new light on the regulation of the vasculogenic activity of ECFCs and suggests a potential link between adult vasculogenesis and the coagulation cascade

    Streptococcus pneumoniae Serotype 1 Capsular Polysaccharide Induces CD8+CD28− Regulatory T Lymphocytes by TCR Crosslinking

    Get PDF
    Zwitterionic capsular polysaccharides (ZPS) of commensal bacteria are characterized by having both positive and negative charged substituents on each repeating unit of a highly repetitive structure that has an α-helix configuration. In this paper we look at the immune response of CD8+ T cells to ZPSs. Intraperitoneal application of the ZPS Sp1 from Streptococcus pneumoniae serotype 1 induces CD8+CD28− T cells in the spleen and peritoneal cavity of WT mice. However, chemically modified Sp1 (mSp1) without the positive charge and resembling common negatively charged polysaccharides fails to induce CD8+CD28− T lymphocytes. The Sp1-induced CD8+CD28− T lymphocytes are CD122lowCTLA-4+CD39+. They synthesize IL-10 and TGF-β. The Sp1-induced CD8+CD28− T cells exhibit immunosuppressive properties on CD4+ T cells in vivo and in vitro. Experimental approaches to elucidate the mechanism of CD8+ T cell activation by Sp1 demonstrate in a dimeric MHC class I-Ig model that Sp1 induces CD8+ T cell activation by enhancing crosslinking of TCR. The expansion of CD8+CD28− T cells is independent, of direct antigen-presenting cell/T cell contact and, to the specificity of the T cell receptor (TCR). In CD8+CD28− T cells, Sp1 enhances Zap-70 phosphorylation and increasingly involves NF-κB which ultimately results in protection versus apoptosis and cell death and promotes survival and accumulation of the CD8+CD28− population. This is the first description of a naturally occurring bacterial antigen that is able to induce suppressive CD8+CD28− T lymphocytes in vivo and in vitro. The underlying mechanism of CD8+ T cell activation appears to rely on enhanced TCR crosslinking. The data provides evidence that ZPS of commensal bacteria play an important role in peripheral tolerance mechanisms and the maintenance of the homeostasis of the immune system

    Identification of the initial molecular changes in response to circulating angiogenic cells-mediated therapy in critical limb ischemia

    Get PDF
    BackgroundCritical limb ischemia (CLI) constitutes the most aggressive form of peripheral arterial occlusive disease, characterized by the blockade of arteries supplying blood to the lower extremities, significantly diminishing oxygen and nutrient supply. CLI patients usually undergo amputation of fingers, feet, or extremities, with a high risk of mortality due to associated comorbidities.Circulating angiogenic cells (CACs), also known as early endothelial progenitor cells, constitute promising candidates for cell therapy in CLI due to their assigned vascular regenerative properties. Preclinical and clinical assays with CACs have shown promising results. A better understanding of how these cells participate in vascular regeneration would significantly help to potentiate their role in revascularization.Herein, we analyzed the initial molecular mechanisms triggered by human CACs after being administered to a murine model of CLI, in order to understand how these cells promote angiogenesis within the ischemic tissues.MethodsBalb-c nude mice (n:24) were distributed in four different groups: healthy controls (C, n:4), shams (SH, n:4), and ischemic mice (after femoral ligation) that received either 50 mu l physiological serum (SC, n:8) or 5x10(5) human CACs (SE, n:8). Ischemic mice were sacrificed on days 2 and 4 (n:4/group/day), and immunohistochemistry assays and qPCR amplification of Alu-human-specific sequences were carried out for cell detection and vascular density measurements. Additionally, a label-free MS-based quantitative approach was performed to identify protein changes related.ResultsAdministration of CACs induced in the ischemic tissues an increase in the number of blood vessels as well as the diameter size compared to ischemic, non-treated mice, although the number of CACs decreased within time. The initial protein changes taking place in response to ischemia and more importantly, right after administration of CACs to CLI mice, are shown.ConclusionsOur results indicate that CACs migrate to the injured area; moreover, they trigger protein changes correlated with cell migration, cell death, angiogenesis, and arteriogenesis in the host. These changes indicate that CACs promote from the beginning an increase in the number of vessels as well as the development of an appropriate vascular network.Institute of Health Carlos III, ISCIII; Junta de Andaluci

    A Prediction Model to Prioritize Individuals for a SARS-CoV-2 Test Built from National Symptom Surveys

    Get PDF
    Background: The gold standard for COVID-19 diagnosis is detection of viral RNA through PCR. Due to global limitations in testing capacity, effective prioritization of individuals for testing is essential. Methods: We devised a model estimating the probability of an individual to test positive for COVID-19 based on answers to 9 simple questions that have been associated with SARS-CoV-2 infection. Our model was devised from a subsample of a national symptom survey that was answered over 2 million times in Israel in its first 2 months and a targeted survey distributed to all residents of several cities in Israel. Overall, 43,752 adults were included, from which 498 self-reported as being COVID-19 positive. Findings: Our model was validated on a held-out set of individuals from Israel where it achieved an auROC of 0.737 (CI: 0.712–0.759) and auPR of 0.144 (CI: 0.119–0.177) and demonstrated its applicability outside of Israel in an independently collected symptom survey dataset from the US, UK, and Sweden. Our analyses revealed interactions between several symptoms and age, suggesting variation in the clinical manifestation of the disease in different age groups. Conclusions: Our tool can be used online and without exposure to suspected patients, thus suggesting worldwide utility in combating COVID-19 by better directing the limited testing resources through prioritization of individuals for testing, thereby increasing the rate at which positive individuals can be identified. Moreover, individuals at high risk for a positive test result can be isolated prior to testing. Funding: E.S. is supported by the Crown Human Genome Center, Larson Charitable Foundation New Scientist Fund, Else Kroener Fresenius Foundation, White Rose International Foundation, Ben B. and Joyce E. Eisenberg Foundation, Nissenbaum Family, Marcos Pinheiro de Andrade and Vanessa Buchheim, Lady Michelle Michels, and Aliza Moussaieff and grants funded by the Minerva foundation with funding from the Federal German Ministry for Education and Research and by the European Research Council and the Israel Science Foundation. H.R. is supported by the Israeli Council for Higher Education (CHE) via the Weizmann Data Science Research Center and by a research grant from Madame Olga Klein – Astrachan
    corecore