593 research outputs found
Origin of magnetic moments in defective TiO2 single crystals
In this paper we show that ferromagnetism can be induced in pure TiO2 single
crystals by oxygen ion irradiation. By combining x-ray diffraction,
Raman-scattering, and electron spin resonance spectroscopy, a defect complex,
\emph{i.e.} Ti ions on the substitutional sites accompanied by oxygen
vacancies, has been identified in irradiated TiO2. This kind of defect complex
results in a local (TiO) stretching Raman mode. We elucidate that
Ti ions with one unpaired 3d electron provide the local magnetic
moments.Comment: 4 pages, 4 figures, to be published at Phys. Rev.
XMMU J100750.5+125818: A strong lensing cluster at z=1.082
We report on the discovery of the X-ray luminous cluster XMMU
J100750.5+125818 at redshift 1.082 based on 19 spectroscopic members, which
displays several strong lensing features. SED modeling of the lensed arc
features from multicolor imaging with the VLT and the LBT reveals likely
redshifts ~2.7 for the most prominent of the lensed background galaxies. Mass
estimates are derived for different radii from the velocity dispersion of the
cluster members, M_200 ~ 1.8 10^{14} Msun, from the X-ray spectral parameters,
M_500 ~ 1.0 10^{14} Msun, and the largest lensing arc, M_SL ~ 2.3 10^{13} Msun.
The projected spatial distribution of cluster galaxies appears to be elongated,
and the brightest galaxy lies off center with respect to the X-ray emission
indicating a not yet relaxed structure. XMMU J100750.5+125818 offers excellent
diagnostics of the inner mass distribution of a distant cluster with a
combination of strong and weak lensing, optical and X-ray spectroscopy.Comment: A&A, accepted for publicatio
Spinel ferrite nanocrystals embedded inside ZnO: magnetic, electronic and magneto-transport properties
In this paper we show that spinel ferrite nanocrystals (NiFe2O4, and CoFe2O4)
can be texturally embedded inside a ZnO matrix by ion implantation and
post-annealing. The two kinds of ferrites show different magnetic properties,
e.g. coercivity and magnetization. Anomalous Hall effect and positive
magnetoresistance have been observed. Our study suggests a
ferrimagnet/semiconductor hybrid system for potential applications in
magneto-electronics. This hybrid system can be tuned by selecting different
transition metal ions (from Mn to Zn) to obtain various magnetic and electronic
properties.Comment: 12 pages, 14 figs. accepted for publication at PR
Crystallographically oriented magnetic ZnFe2O4 nanoparticles synthesized by Fe implantation into ZnO
In this paper, a correlation between structural and magnetic properties of Fe
implanted ZnO is presented. High fluence Fe^+ implantation into ZnO leads to
the formation of superparamagnetic alpha-Fe nanoparticles. High vacuum
annealing at 823 K results in the growth of alpha-Fe particles, but the
annealing at 1073 K oxidized the majority of the Fe nanoparticles. After a long
term annealing at 1073 K, crystallographically oriented ZnFe2O4 nanoparticles
were formed inside ZnO with the orientation relationship of
ZnFe2O4(111)[110]//ZnO(0001)[1120]. These ZnFe2O4 nanoparticles show a
hysteretic behavior upon magnetization reversal at 5 K.Comment: 21 pages, 7 figures, accepted by J. Phys. D: Appl. Phy
Fe-implanted ZnO: Magnetic precipitates versus dilution
Nowadays ferromagnetism is often found in potential diluted magnetic
semiconductor systems. However, many authors argue that the observed
ferromagnetism stems from ferromagnetic precipitates or spinodal decomposition
rather than from carrier mediated magnetic impurities, as required for a
diluted magnetic semiconductor. In the present paper we answer this question
for Fe-implanted ZnO single crystals comprehensively. Different implantation
fluences and temperatures and post-implantation annealing temperatures have
been chosen in order to evaluate the structural and magnetic properties over a
wide range of parameters. Three different regimes with respect to the Fe
concentration and the process temperature are found: 1) Disperse Fe and
Fe at low Fe concentrations and low processing temperatures, 2)
FeZnO at very high processing temperatures and 3) an intermediate
regime with a co-existence of metallic Fe (Fe) and ionic Fe (Fe and
Fe). Ferromagnetism is only observed in the latter two cases, where
inverted ZnFeO and -Fe nanocrystals are the origin of the
observed ferromagnetic behavior, respectively. The ionic Fe in the last case
could contribute to a carrier mediated coupling. However, their separation is
too large to couple ferromagnetically due to the lack of p-type carrier. For
comparison investigations of Fe-implanted epitaxial ZnO thin films are
presented.Comment: 14 pages, 17 figure
Exploring the galaxy cluster-group transition regime at high redshifts: Physical properties of two newly detected z > 1 systems
Context: Multi-wavelength surveys for clusters of galaxies are opening a
window on the elusive high-redshift (z>1) cluster population. Well controlled
statistical samples of distant clusters will enable us to answer questions
about their cosmological context, early assembly phases and the thermodynamical
evolution of the intracluster medium. Aims: We report on the detection of two
z>1 systems, XMMU J0302.2-0001 and XMMU J1532.2-0836, as part of the XMM-Newton
Distant Cluster Project (XDCP) sample. We investigate the nature of the
sources, measure their spectroscopic redshift and determine their basic
physical parameters. Methods: The results of the present paper are based on the
analysis of XMM-Newton archival data, optical/near-infrared imaging and deep
optical follow-up spectroscopy of the clusters. Results: We confirm the X-ray
source XMMU J0302.2-0001 as a gravitationally bound, bona fide cluster of
galaxies at spectroscopic redshift z=1.185. We estimate its M500 mass to
(1.6+/-0.3) times 10^{14} Msun from its measured X-ray luminosity. This ranks
the cluster among intermediate mass system. In the case of XMMU J1532.2-0836 we
find the X-ray detection to be coincident with a dynamically bound system of
galaxies at z=1.358. Optical spectroscopy reveals the presence of a central
active galactic nucleus, which can be a dominant source of the detected X-ray
emission from this system. We provide upper limits of X-ray parameters for the
system and discuss cluster identification challenges in the high-redshift
low-mass cluster regime. A third, intermediate redshift (z=0.647) cluster, XMMU
J0302.1-0000, is serendipitously detected in the same field as XMMU
J0302.2-0001. We provide its analysis as well.Comment: Accepted to A&A, 13/04/2011. 15 pages, 18 figures, 5 tables, 2
appendice
Ion beam induced modification of exchange interaction and spin-orbit coupling in the CoFeSi Heusler compound
A CoFeSi (CFS) film with L2 structure was irradiated with different
fluences of 30 keV Ga ions. Structural modifications were subsequently
studied using the longitudinal (LMOKE) and quadratic (QMOKE) magneto-optical
Kerr effect. Both the coercivity and the LMOKE amplitude were found to show a
similar behavior upon irradiation: they are nearly constant up to ion fluences
of ion/cm, while they decrease with further
increasing fluences and finally vanish at a fluence of
ion/cm, when the sample becomes paramagnetic. However, contrary to this
behavior, the QMOKE signal nearly vanishes even for the smallest applied
fluence of ion/cm. We attribute this reduction of the
QMOKE signal to an irradiation-induced degeneration of second or higher order
spin-orbit coupling, which already happens at small fluences of 30 keV Ga
ions. On the other hand, the reduction of coercivity and LMOKE signal with high
ion fluences is probably caused by a reduction of the exchange interaction
within the film material
Discovery of an X-ray-Luminous Galaxy Cluster at z=1.4
We report the discovery of a massive, X-ray-luminous cluster of galaxies at
z=1.393, the most distant X-ray-selected cluster found to date. XMMU
J2235.3-2557 was serendipitously detected as an extended X-ray source in an
archival XMM-Newton observation of NGC 7314. VLT-FORS2 R and z band snapshot
imaging reveals an over-density of red galaxies in both angular and color
spaces. The galaxy enhancement is coincident in the sky with the X-ray
emission; the cluster red sequence at R-z ~ 2.1 identifies it as a
high-redshift candidate. Subsequent VLT-FORS2 multi-object spectroscopy
unambiguously confirms the presence of a massive cluster based on 12 concordant
redshifts in the interval 1.38<z<1.40. The preliminary cluster velocity
dispersion is 762+/-265 km/s. VLT-ISAAC Ks and J band images underscore the
rich distribution of red galaxies associated with the cluster. Based on a 45 ks
XMM-Newton observation, we find the cluster has an aperture-corrected,
unabsorbed X-ray flux of f_X = (3.6 +/- 0.3) x 10^{-14} erg/cm^2/s, a
rest-frame X-ray luminosity of L_X = (3.0 +/- 0.2) x 10^{44} h_70^{-2} erg/s
(0.5--2.0 keV), and a temperature of kT=6.0 (+2.5, -1.8) keV. Though XMMU
J2235.3-2557 is likely the first confirmed z>1 cluster found with XMM-Newton,
the relative ease and efficiency of discovery demonstrates that it should be
possible to build large samples of z>1 clusters through the joint use of X-ray
and large, ground-based telescopes.Comment: 4 pages, 3 figures, accepted for publication in ApJ Letters, a
high-resolution version is available at
http://www.astro.lsa.umich.edu/~cmullis/papers/Mullis_et_al_2005a.pdf,
additional information is available at
http://www.astro.lsa.umich.edu/~cmullis/research/xmmuj223
- …