2,513 research outputs found

    An Improved Method For Determining and Characterizing Alignments of Point-Like Features and Its Implications For the Pinacate Volcanic Field, Sonora, Mexico

    Get PDF
    We present an improved method for determining statistically significant alignments of pointlike features. One of the principal such methods now in use, the two-point azimuth method, depends on a homogeneous distribution of points over the region of interest. Modification of this approach by use of the relatively new statistical technique of kernel density estimation permits treatment of heterogeneous point distributions without introducing substantial dependence on choice of the grid employed in the test for significance of apparent preferred orientations. The improved method can selectively reveal alignments on different spatial scales and can suggest the locations of alignments as well as their orientation. We use this method to analyze the spatial distribution of 416 vents, largely of Pleistocene age, in the Pinacate volcanic field, Sonora, Mexico, just east of the northern end of the Gulf of California. Apart from a few sets of aligned cinder cones, the distribution of Pinacate vents appears nearly random on aerial and space photography. However, when treated statistically, old Pinacate vents exhibit structural control trending approximately N10 degrees E throughout the field and in all its subareas. In contrast, vents with ages estimated by comparison with dated cones to be younger than about 0.4 Ma show not only the N10 degrees E control but also N20 degrees W and N55 degrees W alignments significant at the 95% confidence level. The N10 degrees E alignment probably reflects the current Basin and Range horizontal stress regime in this particular area, which is atop the mantle magma source of the Pinacate lavas. The N55 degrees W direction is related to a major regional fracture of that orientation passing through the middle of the field and possibly related to normal faults associated with opening of the adjacent Gulf of California. The distribution of vents relative to the fracture trace is consistent with magma having been guided upward along a SW dipping fault plane. The origin of the N20 degrees W alignment is unknown but of pre-Pleistocene heritage. We found no evidence to support control of the Pinacate vent alignments parallel to rifting or transform directions in the adjacent Gulf. Intrusion along N20 degrees W and N55 degrees W fractures at or since about 0.4 m.y. ago could reflect either a shift in the crustal stress field or an increase in magma pressure in Pinacate conduits that allowed magma to ascend along structures that were not parallel to the maximum horizontal compressive stress

    Commensurate to incommensurate magnetic phase transition in Honeycomb-lattice pyrovanadate Mn2V2O7

    Get PDF
    We have synthesized single crystalline sample of Mn2_2V2_2O7_7 using floating zone technique and investigated the ground state using magnetic susceptibility, heat capacity and neutron diffraction. Our magnetic susceptibility and heat capacity reveal two successive magnetic transitions at TN1=T_{N1} = 19 K and TN2=T_{N2} = 11.8 K indicating two distinct magnetically ordered phases. The single crystal neutron diffraction study shows that in the temperature (TT) range 11.8 K T\le T \le 19 K the magnetic structure is commensurate with propagation vector k1=(0,0.5,0)k_1 = (0, 0.5, 0), while upon lowering temperature below TN2=T_{N2} = 11.8 K an incommensurate magnetic order emerges with k2=(0.38,0.48,0.5)k_2 = (0.38, 0.48, 0.5) and the magnetic structure can be represented by cycloidal modulation of the Mn spin in acac-plane. We are reporting this commensurate to incommensurate transition for the first time. We discuss the role of the magnetic exchange interactions and spin-orbital coupling on the stability of the observed magnetic phase transitions.Comment: 8 pages, 7 figure

    Predicting the contributions of novel marine prey resources from angling and anadromy to the diet of a freshwater apex predator

    Get PDF
    1. Anadromous fishes can be important prey resources for piscivorous fauna in lowland rivers. Freshwater anglers exploiting large-bodied cypriniform fishes use high quantities of pelletized marine fishmeal baits that can contribute substantially to fish diets. This marine-derived energy pathway also potentially provides a marine prey resource for freshwater piscivores. However, large-bodied cypriniform fishes are often in a size refuge against predation due to their large sizes. 2. Stable isotope (δ15N and δ13C) analysis assessed how novel marine prey resources influenced the diet of a freshwater apex predator, Northern pike Esox lucius, in an impounded river basin (lower River Severn, Western England). Up to three groups of prey resources were present: anadromous European shad (Alosa spp.), cypriniform fishes with dietary specialisms based on marine fishmeal baits, and freshwater prey. The availability of these prey resources to E. lucius varied according to river connectivity and levels of angling exploitation in different river reaches. 3. Where the three prey groups were present, E. lucius were more enriched in δ13C values (range: -24.74 to -16.34 ‰) compared to river reaches where aspects of the marine prey groups were absent. (range: -28.30 to -21.47) In all reaches, δ13C increased as E. lucius length increased. In the reach where all prey groups were present, the isotopic niches of three E. lucius size classes were strongly partitioned; this was not apparent in reaches where the marine pathways were unavailable. 4. Stable isotope mixing models suggested that freshwater prey were the most important prey item, contributing between 42 and 96 % to the diet of individual E. lucius. However, where present, anadromous fishes and cypriniform fishes specialising on marine fishmeal baits were also important prey items, contributing substantially to the diet of larger E. lucius (length > 650 mm). The total dietary contributions of the marine resources varied considerably among the individual larger fish (22 to 58 % of total diet). 5. The presence of two marine resource pathways in a lowland river thus strongly influenced the diet of an apex predator, but with contributions being a function of their spatial availability, E. lucius body size and individual trophic specialisations. These results emphasise how the anthropogenic activities of river engineering and human subsidies can affect the trophic dynamics of apex predators

    Enabling Technologies for the Future of Chemical Synthesis.

    Get PDF
    Technology is evolving at breakneck pace, changing the way we communicate, travel, find out information, and live our lives. Yet chemistry as a science has been slower to adapt to this rapidly shifting world. In this Outlook we use highlights from recent literature reports to describe how progresses in enabling technologies are altering this trend, permitting chemists to incorporate new advances into their work at all levels of the chemistry development cycle. We discuss the benefits and challenges that have arisen, impacts on academic-industry relationships, and future trends in the area of chemical synthesis.We are grateful to the Woolf Fisher Trust (D.E.F), Syngenta Crop Protection AG (C.B.) and EPSRC (S.V.L., grant codes EP/K009494/1, EP/M004120/1 and EP/K039520/1) for financial assistance.This is the final version of the article. It first appeared from the American Chemical Society via https://doi.org/10.1021/acscentsci.6b0001

    SpF: Enabling Petascale Performance for Pseudospectral Dynamo Models

    Get PDF
    Pseudospectral (PS) methods possess a number of characteristics (e.g., efficiency, accuracy, natural boundary conditions) that are extremely desirable for dynamo models. Unfortunately, dynamo models based upon PS methods face a number of daunting challenges, which include exposing additional parallelism, leveraging hardware accelerators, exploiting hybrid parallelism, and improving the scalability of global memory transposes. Although these issues are a concern for most models, solutions for PS methods tend to require far more pervasive changes to underlying data and control structures. Further, improvements in performance in one model are difficult to transfer to other models, resulting in significant duplication of effort across the research community.We have developed an extensible software framework for pseudospectral methods called SpF that is intended to enable extreme scalability and optimal performance. High-level abstractions provided by SpF unburden applications of the responsibility of managing domain decomposition and load balance while reducing the changes in code required to adapt to new computing architectures. The key design concept in SpF is that each phase of the numerical calculation is partitioned into disjoint numerical kernels that can be performed entirely in-processor. The granularity of domain-decomposition provided by SpF is only constrained by the data-locality requirements of these kernels. SpF builds on top of optimized vendor libraries for common numerical operations such as transforms, matrix solvers, etc., but can also be configured to use open source alternatives for portability. SpF includes several alternative schemes for global data redistribution and is expected to serve as an ideal testbed for further research into optimal approaches for different network architectures.In this presentation, we will describe the basic architecture of SpF as well as preliminary performance data and experience with adapting legacy dynamo codes. We will conclude with a discussion of planned extensions to SpF that will provide pseudospectral applications with additional flexibility with regard to time integration, linear solvers, and discretization in the radial direction

    Phenothiazine-functionalized redox polymers for a new cathode-active material

    Get PDF

    The new mythologies and premature aging in the youth culture

    Full text link
    Comparative studies of aging men in a variety of preliterate traditional societies suggest that older men, across cultures, are relatively mild and uncompetitive, as compared to younger men from the same communities. Older men are more interested in receiving than in producing, more interested in communion than in agency; their sense of pleasure and security is based on food, religion, and the assurance of love. The counterculture gives priority to the same themes, and thereby seems to sponsor a premature senescence, in the psychological sense. Various contemporary myths stemming from affluence and consumerism that have led to the new geriatrics are examined, particularly the myth of the all-including, omnipotential self, which is seen as a translation of socialist, collectivist ideals into the domain of personality. The effects of the new psychic collectivism on ego development in the adolescent and postadolescent periods are also considered.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45279/1/10964_2005_Article_BF02214091.pd

    A conserved circadian function for the Neurofibromatosis 1 gene

    Get PDF
    Summary: Loss of the Neurofibromatosis 1 (Nf1) protein, neurofibromin, in Drosophila disrupts circadian rhythms of locomotor activity without impairing central clock function, suggesting effects downstream of the clock. However, the relevant cellular mechanisms are not known. Leveraging the discovery of output circuits for locomotor rhythms, we dissected cellular actions of neurofibromin in recently identified substrates. Herein, we show that neurofibromin affects the levels and cycling of calcium in multiple circadian peptidergic neurons. A prominent site of action is the pars intercerebralis (PI), the fly equivalent of the hypothalamus, with cell-autonomous effects of Nf1 in PI cells that secrete DH44. Nf1 interacts genetically with peptide signaling to affect circadian behavior. We extended these studies to mammals to demonstrate that mouse astrocytes exhibit a 24-hr rhythm of calcium levels, which is also attenuated by lack of neurofibromin. These findings establish a conserved role for neurofibromin in intracellular signaling rhythms within the nervous system. : Bai et al. show that the gene mutated in the disease Neurofibromatosis 1 is required for maintaining levels or cycling of calcium in circadian neurons in Drosophila and in mammalian cells. These effects likely account for effects of Nf1 on circadian behavior in Drosophila and may be relevant in explaining sleep phenotypes in patients. Keywords: circadian rhythms, neurofibromatosis 1, Drosophila, peptide signaling, cycling of calcium, mouse astrocyte

    Grover's algorithm on a Feynman computer

    Get PDF
    We present an implementation of Grover's algorithm in the framework of Feynman's cursor model of a quantum computer. The cursor degrees of freedom act as a quantum clocking mechanism, and allow Grover's algorithm to be performed using a single, time-independent Hamiltonian. We examine issues of locality and resource usage in implementing such a Hamiltonian. In the familiar language of Heisenberg spin-spin coupling, the clocking mechanism appears as an excitation of a basically linear chain of spins, with occasional controlled jumps that allow for motion on a planar graph: in this sense our model implements the idea of "timing" a quantum algorithm using a continuous-time random walk. In this context we examine some consequences of the entanglement between the states of the input/output register and the states of the quantum clock

    Shared developmental gait disruptions across two mouse models of neurodevelopmental disorders

    Get PDF
    BACKGROUND: Motor deficits such as abnormal gait are an underappreciated yet characteristic phenotype of many neurodevelopmental disorders (NDDs), including Williams Syndrome (WS) and Neurofibromatosis Type 1 (NF1). Compared to cognitive phenotypes, gait phenotypes are readily and comparably assessed in both humans and model organisms and are controlled by well-defined CNS circuits. Discovery of a common gait phenotype between NDDs might suggest shared cellular and molecular deficits and highlight simple outcome variables to potentially quantify longitudinal treatment efficacy in NDDs. METHODS: We characterized gait using the DigiGait assay in two different murine NDD models: the complete deletion (CD) mouse, which models hemizygous loss of the complete WS locus, and the Nf1 RESULTS: Compared to wildtype littermate controls, both models displayed markedly similar spatial, temporal, and postural gait abnormalities during development. Developing CD mice also displayed significant decreases in variability metrics. Multiple gait abnormalities observed across development in the Nf1 CONCLUSIONS: These findings suggest that the subcomponents of gait affected in NDDs show overlap between disorders as well as some disorder-specific features, which may change over the course of development. Our incorporation of spatial, temporal, and postural gait measures also provides a template for gait characterization in other NDD models and a platform to examining circuits or longitudinal therapeutics
    corecore