

102

103

104

105

106

1010 1011 1012 1013 1014 1015

#
 c

o
re

s

BW

1D
2D

2 Phase
Recursive

3D
Naive

Communication

Computation

Pseudospectral (PS) methods possess a number of characteristics (e.g., efficiency, accuracy,
natural boundary conditions) that are extremely desirable for dynamo models. Unfortunately,
dynamo models based upon PS methods face a number of daunting challenges, which include
exposing additional parallelism, leveraging hardware accelerators, exploiting hybrid parallelism,
and improving the scalability of global memory transposes. Although these issues are a concern
for most models, solutions for PS methods tend to require far more pervasive changes to
underlying data and control structures. Furthermore, performance improvements in one model are
difficult to transfer to other models, resulting in significant duplication of effort across the
research community.

We have developed SpF, an extensible software framework for PS methods, which is intended to
enable extreme scalability and optimal performance. High-level abstractions provided by SpF
unburden applications of the responsibility of managing domain decomposition and load balance
while reducing the code changes required to adapt to new computing architectures. The key
design concept in SpF is that each phase of the numerical calculation is partitioned into disjoint
numerical “kernels” that can be performed entirely in-processor. The granularity of domain-
decomposition provided by SpF is only constrained by the data-locality requirements of these
kernels. SpF builds on top of optimized vendor libraries for common numerical operations such
as transforms and matrix solvers, but can also be configured to use open source alternatives for
portability. SpF includes several alternative schemes for global data redistribution and is expected
to serve as a testbed for further research into optimal approaches for advanced network
architectures.

SpF: Enabling Petascale Performance for Pseudospectral Dynamo Models
1 NASA Goddard Space Flight Center, 2 SGT, 3 University of Arizona, 4 Tokyo Institute of Technology

Introduction

Targeted NASA Applications

T. Clune1, W. Jiang2,1, J. Vriesema3 and G. Gutmann4

Design Elements

Goals

PE0

Distribution 1

PE1

PE2

PE3

Distribution 2

PE0

PE1

PE2

PE3

PE0

PE1

PE2

PE3

PE0

PE1

PE2

PE3

Sorted metadata

Parallel implementations of PS methods can generally be implemented as a loop consisting of alternating series
of numerical transforms and global memory transposes/permutations.

Transpose Transpose Transpose

Transform A Transform B Transform C

Typical applications use inflexible, parameterized heuristics for decomposing the data across processes for each
transform. Transposes are then hardcoded to align with these built-in assumptions. This approach leads to brittle
implementations that require significant revision when undergoing further optimization.

The key innovation in SpF is to enable implementation of transforms in a decomposition-independent,
communication-free manner. As demonstrated below for Legendre transforms, locality properties of transforms
lead to a natural 3D parameterization of the input and output domains. The numerical operation only couples
values along one of these dimensions, which allows a completely arbitrary distribution of the remaining axes.

To support the arbitrary domain decompositions, SpF must fully automate permutations between alternative
layouts.

At extreme scale, the efficient implementation
of data permutations is nontrivial. The figure
above shows the benefit of multi-staged
permutations for a typical petascale dynamo
simulation. SpF enables exploring such
alternatives with minimal effort.

Naïve initialization requires O(N2) operations, which is
prohibitive for petascale applications. SpF uses a novel
approach based upon parallel sort to achieve a
complexity of O(N log N).

GP51A-1072

Automated Permutations

DYNAMO

ASH

MoSST

HPS

β, �Aβ()
β∈ ′D{ }= F α,Aα(){ }

α∈D
⎡
⎣

⎤
⎦

Legendre Transform Example

To Spatial

To Spectral

k

i, ′j�a =
k

′j j

f k

i, j

a()

� Each transform F(A) consists of a finite set of independent
“kernels” parameterized by k

� Each kernel couples data along axes j’ and j in the input
and output domains respectively

� The action of each kernel is completely independent of
axis i:

The software framework is free to assign each “pencil” (i,k) to an arbitrary
processor. Secondary considerations such as memory footprint and cache-
locality lead to prioritizing distribution along the kernel axis. Early parallel
implementations of PS applications generally used 1D decompositions
corresponding to just one of these axes. Modern implementations often
exploit a 2D decomposition, but still cannot fully exploit parallelism when
nk is is not constant such as for the Poisson solver illustrated by the figure
to the left. Next Steps

Software Framework Implementation

References

The basic SpF framework is now mostly complete, and work has begun on porting legacy
applications. Longer term, the primary focus will be to extend SpF in the following ways:

�  Advanced algorithms for Distributor and Permutor subclasses for extreme scales

� Factory for constructing linear systems for alternative radial schemes

� Incorporate hardware accelerators

� Distributed Kernels – large kernels with internal parallelism (e.g., implicit coriolis)

Beck, K., Test Driven Development: by Example, 2002.
Brummel, N. et al, “Penetration and Overshooting in Turbulent Compressible Convection”, ApJ.
570:825-854, 2002.
Clune, T., Parallel Fortran Unit Testing Framework (pFUnit) http://sourceforge.net/p/pfunit/_list/git
Glatzmaier, G. and Clune, T., “Computational Aspects of Geodynnamo Simulations”, Comput. Sci.
Eng. 2:61-67, 2000.
Hack, J. and Jakob, R., “Description of a Global Shallow Water Model Based on the Spectral
Transform Method”, NCAR Technical Note, 1992.
Jiang, W. and Kuang, W., “An MPI-based MoSST core dynamics model”, Physics of the Earth and
Planetary Interiors, 170 (2008), 46–51.
Miesch, M. et al, “Three-dimensional spherical simulations of solar convection. I. Differential
rotation and pattern evolution achieved with laminar and turbulent states”, ApJ, 2000.

Current Status

Index Space Representation of Computational Domains

Large irregular computational domains are specified
using a simple algebra of outer products and direct
sums on 1D “axes.” Applications exchange data with
the framework using these structures to specify
layout in memory.

�  Algorithms
�  Kernel – non-decomposable “atom” of a numerical phase
�  KernelFactory – generates parameterized set of kernels and associated in/out Field objects

�  Integrator – performs integration in time (RK, AB, CN, etc.)

�  Data

�  IndexSpace – algebra for composing descriptions of arbitrary domains
�  Field – container for data associated with an IndexSpace
�  DataIO – enables multiple parallel I/O formats (initially just pHDF5)

�  Communication and Load Balancing
�  Permutor – redistributes data from one Field to another
�  Distributor – uses metadata from KernelFactory to perform domain decomposition

Test driven development (TDD) has been routinely applied using pFUnit 2.0 to ensure reliability
and portability of the basic framework.

Key Abstractions

�  Scalable and Efficient
�  Extremely fine-grained parallelism
�  Multilevel parallelism (MPI+OMP)
�  Isolate comp. intensive sections
�  Utilize optimized vendor libraries
�  Parallel I/O

�  Flexible
�  Variant geometry
�  Alternative radial schemes
�  Variant load balance strategies

�  Reduced duplication
�  Shared code infrastructure
�  Exchange of innovations

�  Extensible – OO design

�  Robust and Portable

�  Test driven development
�  Nightly automated regression tests

k

j, ′j

i

nk =1,2,3,…

�

r

m

β, �Aβ(){ }
β∈ ′Dk⊗Qk

i
= Fk α,Aα(){ }

α∈Dk⊗Qk
i

⎡
⎣

⎤
⎦for

k =1,…,N
i =1,…,nk

⎧
⎨
⎪

⎩⎪

To Spatial

To Spectral

D = Dk ⊗Qk()
k=1,…,N
∪

= Dk ⊗Qk
i()

k=1,…,N
i=1,…,nk

∪

′D = ′Dk ⊗Qk()
k=1,…,N
∪

= ′Dk ⊗Qk
i()

k=1,…,N
i=1,…,nk

∪

k k

ii

j j

Induced
decomposition

m

r

m

�
θ

r

i j

1 3
2 3
3 3
1 5
2 5
3 5

j

3
5
2
4

i
1
2
3

A

j

3
5

B

j

2
4

′B A⊗ B B⊕ ′B

����

��

���� ��	� ����

��
�
��
��
�	

�

��
�

�������
������

�	������
����������������������������
���

��������� ��������� ������ ������

���
�������

,l m

η

δ
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟Φ⎝ ⎠ ,i j

U
V

η

δ
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟Φ
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

���������
������

,l m

f
f
f

η

δ

Φ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1

2

3

4

,j m

f
f
f
f
E

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1

2

3

4

,i j

f
f
f
f
E

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 ����
�!�

η

δ
Φ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

l ,m

"����
,l m

U
V

η

δ
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟Φ
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

��#� $$��

,j m

U
V

η

δ
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟Φ
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠ ,m j

U
V

η

δ
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟Φ
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

"����

%$$��

1

2

3

4

,m j

f
f
f
f
E

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

"����%��#�

1

2

3

4

,l m

f
f
f
f
E

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

,l m

f
f
f

η

δ

Φ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

"����

SW main loop

The above figure demonstrates the scalability
of a synthetic SpF application that combines a
Legendre transform, an FFT, and a transpose.

In this schematic of an SpF-based SW,
customization is only required for the items
indicated in green.

https://ntrs.nasa.gov/search.jsp?R=20140011484 2019-08-30T05:03:44+00:00Z

brought to you by
C

O
R

E
V

iew
 m

etadata, citation and sim
ilar papers at core.ac.uk

provided by N
A

S
A

 T
echnical R

eports S
erver

https://core.ac.uk/display/186445558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

