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Pseudospectral (PS) methods possess a number of characteristics (e.g., efficiency, accuracy, 
natural boundary conditions) that are extremely desirable for dynamo models. Unfortunately, 
dynamo models based upon PS methods face a number of daunting challenges, which include 
exposing additional parallelism, leveraging hardware accelerators, exploiting hybrid parallelism, 
and improving the scalability of global memory transposes. Although these issues are a concern 
for most models, solutions for PS methods tend to require far more pervasive changes to 
underlying data and control structures. Furthermore, performance improvements in one model are 
difficult to transfer to other models, resulting in significant duplication of effort across the 
research community. 
 
We have developed SpF, an extensible software framework for PS methods, which is intended to 
enable extreme scalability and optimal performance. High-level abstractions provided by SpF 
unburden applications of the responsibility of managing domain decomposition and load balance 
while reducing the code changes required to adapt to new computing architectures.  The key 
design concept in SpF is that each phase of the numerical calculation is partitioned into disjoint 
numerical “kernels” that can be performed entirely in-processor. The granularity of domain-
decomposition provided by SpF is only constrained by the data-locality requirements of these 
kernels. SpF builds on top of optimized vendor libraries for common numerical operations such 
as transforms and matrix solvers, but can also be configured to use open source alternatives for 
portability. SpF includes several alternative schemes for global data redistribution and is expected 
to serve as a testbed for further research into optimal approaches for advanced network 
architectures. 

SpF: Enabling Petascale Performance for Pseudospectral Dynamo Models 
1 NASA Goddard Space Flight Center, 2 SGT, 3 University of Arizona, 4 Tokyo Institute of Technology  
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Parallel implementations of PS methods can generally be implemented as a loop consisting of alternating series 
of numerical transforms and global memory transposes/permutations. 

Transpose Transpose Transpose 

Transform A Transform B Transform C 

Typical applications use inflexible, parameterized heuristics for decomposing the data across processes for each 
transform. Transposes are then hardcoded to align with these built-in assumptions. This approach leads to brittle 
implementations that require significant revision when undergoing further optimization.   
 
The key innovation in SpF is to enable implementation of transforms in a decomposition-independent, 
communication-free manner. As demonstrated below for Legendre transforms, locality properties of transforms 
lead to a natural 3D parameterization of the input and output domains. The numerical operation only couples 
values along one of these dimensions, which allows a completely arbitrary distribution of the remaining axes. 

To support the arbitrary domain decompositions, SpF must fully automate permutations between alternative 
layouts.   

At extreme scale, the efficient implementation 
of  data permutations is nontrivial. The figure 
above shows the benefit of multi-staged 
permutations for a typical petascale dynamo 
simulation. SpF enables exploring such 
alternatives with minimal effort. 

Naïve initialization requires O(N2) operations, which is 
prohibitive for petascale applications. SpF uses a novel 
approach based upon parallel sort to achieve a 
complexity of O(N log N). 
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� Each transform F(A) consists of a finite set of independent 
“kernels” parameterized by k 

� Each kernel couples data along axes j’ and j in the input 
and output domains respectively 

� The action of each kernel is completely independent of 
axis i: 

The software framework is free to assign each “pencil” (i,k) to an arbitrary 
processor. Secondary considerations such as memory footprint and cache-
locality lead to prioritizing distribution along the kernel axis. Early parallel 
implementations of PS applications generally used 1D decompositions 
corresponding to just one of these axes. Modern implementations often 
exploit a 2D decomposition, but still cannot fully exploit parallelism when 
nk is is not constant such as for the Poisson solver illustrated by the figure 
to the left.   Next Steps 

Software Framework Implementation 

References 

The basic SpF framework is now mostly complete, and work has begun on porting legacy 
applications. Longer term, the primary focus will be to extend SpF in the following ways: 
 

�  Advanced algorithms for Distributor and Permutor subclasses for extreme scales 

� Factory for constructing linear systems for alternative radial schemes 

� Incorporate hardware accelerators  
 
� Distributed Kernels – large kernels with internal parallelism (e.g., implicit coriolis) 
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Current Status 

Index Space Representation of Computational Domains 

Large irregular computational domains are specified 
using a simple algebra of outer products and direct 
sums on 1D “axes.” Applications exchange data with 
the framework using these structures to specify 
layout in memory. 

�  Algorithms 
�  Kernel – non-decomposable “atom” of a numerical phase 
�  KernelFactory – generates parameterized set of kernels and associated in/out Field objects 
 

�  Integrator – performs integration in time (RK, AB, CN, etc.) 
 
�  Data 

�  IndexSpace – algebra for composing descriptions of arbitrary domains 
�  Field – container for data associated with an IndexSpace 
�  DataIO – enables multiple parallel I/O formats (initially just pHDF5) 
 

�  Communication and Load Balancing 
�  Permutor – redistributes data from one Field to another 
�  Distributor – uses metadata from KernelFactory to perform domain decomposition 

Test driven development (TDD) has been routinely applied using pFUnit 2.0 to ensure reliability 
and portability of the basic framework. 

Key Abstractions 

�  Scalable and Efficient 
�  Extremely fine-grained parallelism 
�  Multilevel parallelism (MPI+OMP) 
�  Isolate comp. intensive sections 
�  Utilize optimized vendor libraries 
�  Parallel I/O 
 

�  Flexible 
�  Variant geometry 
�  Alternative radial schemes  
�  Variant load balance strategies 

�  Reduced duplication 
�  Shared code infrastructure 
�  Exchange of innovations 
 

�  Extensible – OO design 
 
�  Robust and Portable 

�  Test driven development 
�  Nightly automated regression tests 
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SW main loop 

The above figure demonstrates the scalability 
of a synthetic SpF application that combines a 
Legendre transform, an FFT, and a transpose. 

In this schematic of an SpF-based SW, 
customization is only required for the items 
indicated in green. 
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