165 research outputs found

    Specific staining of human chromosomes in Chinese hamster x man hybrid cell lines demonstrates interphase chromosome territories

    Get PDF
    In spite of Carl Rabl's (1885) and Theodor Boveri's (1909) early hypothesis that chromosomes occupy discrete territories or domains within the interphase nucleus, evidence in favor pf this hypothesis has been limited and indirect so far in higher plants and animals. The alternative possibility that the chromatin fiber of single chromosomes might be extended throughout the major part of even the whole interphase nucleus has been considered for many years. In the latter case, chromosomes would only exist as discrete chromatin bodies during mitosis but not during interphase. Both possibilities are compatible with Boveri's well established paradigm of chromosome individuality. Here we show that an active human X chromosome contained as the only human chromosome in a Chinese hamster x man hybrid cell line can be visualized both in metaphse plates and in interphase nuclei after in situ hybridization with either 3H- or biotin-labeled human genomic DNA. We demonstrate that this chromosome is organized as a distinct chromatin body throughout interphase. In addition, evidence for the territorial organization of human chromosomes is also presented for another hybrid cell line containing several autosomes and the human X chromosome. These findings are discussed in the context of our present knowledge of the organization and topography of interphase chromosomes. General applications of a strategy aimed at specific staining of individual chromosomes in experimental and clinical cytogenetics are briefly considered

    Meteorological Controls on Local and Regional Volcanic Ash Dispersal

    Get PDF
    Volcanic ash has the capacity to impact human health, livestock, crops and infrastructure, including international air traffic. For recent major eruptions, information on the volcanic ash plume has been combined with relatively coarse-resolution meteorological model output to provide simulations of regional ash dispersal, with reasonable success on the scale of hundreds of kilometres. However, to predict and mitigate these impacts locally, significant improvements in modelling capability are required. Here, we present results from a dynamic meteorological-ash-dispersion model configured with sufficient resolution to represent local topographic and convectively-forced flows. We focus on an archetypal volcanic setting, Soufrière, St Vincent, and use the exceptional historical records of the 1902 and 1979 eruptions to challenge our simulations. We find that the evolution and characteristics of ash deposition on St Vincent and nearby islands can be accurately simulated when the wind shear associated with the trade wind inversion and topographically-forced flows are represented. The wind shear plays a primary role and topographic flows a secondary role on ash distribution on local to regional scales. We propose a new explanation for the downwind ash deposition maxima, commonly observed in volcanic eruptions, as resulting from the detailed forcing of mesoscale meteorology on the ash plume

    Domain choice in an experimental nested modeling prediction system for South America

    Get PDF
    The purposes of this paper are to evaluate the new version of the regional model, RegCM3, over South America for two test seasons, and to select a domain for use in an experimental nested prediction system, which incorporates RegCM3 and the European Community-Hamburg (ECHAM) general circulation model (GCM). To evaluate RegCM3, control experiments were completed with RegCM3 driven by both the NCEP/NCAR Reanalysis (NNRP) and ECHAM, using a small control domain (D-CTRL) and integration periods of January–March 1983 (El Niño) and January–March 1985 (La Niña). The new version of the regional model captures the primary circulation and rainfall differences between the two years over tropical and subtropical South America. Both the NNRP-driven and ECHAM-driven RegCM3 improve the simulation of the Atlantic intertropical convergence zone (ITCZ) compared to the GCM. However, there are some simulation errors. Irrespective of the driving fields, weak northeasterlies associated with reduced precipitation are observed over the Amazon. The simulation of the South Atlantic convergence zone is poor due to errors in the boundary condition forcing which appear to be amplified by the regional model. To select a domain for use in an experimental prediction system, sensitivity tests were performed for three domains, each of which includes important regional features and processes of the climate system. The domain sensitivity experiments were designed to determine how domain size and the location of the GCM boundary forcing affect the regional circulation, moisture transport, and rainfall in two years with different large scale conditions. First, the control domain was extended southward to include the exit region of the Andes low level jet (D-LLJ), then eastward to include the South Atlantic subtropical high (D-ATL), and finally westward to include the subsidence region of the South Pacific subtropical high and to permit the regional model more freedom to respond to the increased resolution of the Andes Mountains (D-PAC). In order to quantify differences between the domain experiments, measures of bias, root mean square error, and the spatial correlation pattern were calculated between the model results and the observed data for the seasonal average fields. The results show the GCM driving fields have remarkable control over the RegCM3 simulations. Although no single domain clearly outperforms the others in both seasons, the control domain, D-CTRL, compares most favorably with observations. Over the ITCZ region, the simulations were improved by including a large portion of the South Atlantic subtropical high (D-ATL). The methodology presented here provides a quantitative basis for evaluating domain choice in future studies

    Sensitivity of the Himalayan orography representation in simulation of winter precipitation using Regional Climate Model (RegCM) nested in a GCM

    Get PDF
    This document is the Accepted Manuscript version of the following article: Tiwari, P.R., Kar, S.C., Mohanty, U.C., Climate Dynamics (2017). The final publication is available at Springer via https://link.springer.com/article/10.1007%2Fs00382-017-3567-3. The Accepted Manuscript is under embargo. Embargo end date: 24 February 2018.The role of the Himalayan orography representationin a Regional Climate Model (RegCM4) nested inNCMRWF global spectral model is examined in simulatingthe winter circulation and associated precipitation over theNorthwest India (NWI; 23°–37.5°N and 69°–85°E) region.For this purpose, nine different set of orography representationsfor nine distinct precipitation years (three years eachfor wet, normal and dry) have been considered by increasing(decreasing) 5, 10, 15, and 20% from the mean height(CNTRL) of the Himalaya in RegCM4 model. Validationwith various observations revealed a good improvementin reproducing the precipitation intensity and distributionwith increased model height compared to the resultsobtained from CNTRL and reduced orography experiments.Further it has been found that, increase in heightby 10% (P10) increases seasonal precipitation about 20%,while decrease in height by 10% (M10) results around 28%reduction in seasonal precipitation as compared to CNTRLexperiment over NWI region. This improvement in precipitationsimulation comes due to better representation ofvertical pressure velocity and moisture transport as thesefactors play an important role in wintertime precipitationprocesses over NWI region. Furthermore, a comparison of model-simulated precipitation with observed precipitationat 17 station locations has been also carried out. Overall,the results suggest that when the orographic increment of10% (P10) is applied on RegCM4 model, it has better skillin simulating the precipitation over the NWI region andthis model is a useful tool for further regional downscalingstudies.Peer reviewe

    Blocking representation in the ERA-Interim driven EURO-CORDEX RCMs

    Get PDF
    While Regional Climate Models (RCMs) have been shown to yield improved simulations compared to General Circulation Model (GCM), their representation of large-scale phenomena like atmospheric blocking has been hardly addressed. Here, we evaluate the ability of RCMs to simulate blocking situations present in their reanalysis driving data and analyse the associated impacts on anomalies and biases of European 2-m air temperature (TAS) and precipitation rate (PR). Five RCM runs stem from the EURO-CORDEX ensemble while three RCMs are WRF models with different nudging realizations, all of them driven by ERA-Interim for the period 1981?2010. The detected blocking systems are allocated to three sectors of the Euro-Atlantic region, allowing for a characterization of distinctive blocking-related TAS and PR anomalies. Our results indicate some misrepresentation of atmospheric blocking over the EURO-CORDEX domain, as compared to the driving reanalysis. Most of the RCMs showed fewer blocks than the driving data, while the blocking misdetection was negligible for RCMs strongly conditioned to the driving data. A higher resolution of the RCMs did not improve the representation of atmospheric blocking. However, all RCMs are able to reproduce the basic anomaly structure of TAS and PR connected to blocking. Moreover, the associated anomalies do not change substantially after correcting for the misrepresentation of blocking in RCMs. The overall model bias is mainly determined by pattern biases in the representations of surface parameters during non-blocking situations. Biases in blocking detections tend to have a secondary influence in the overall bias due to compensatory effects of missed blockings and non-blockings. However, they can lead to measurable effects in the presence of a strong blocking underestimation.This work was funded by the Austrian Science Fund (FWF) under the project: Understanding Contrasts in high Mountain hydrology in Asia (UNCOMUN: I 1295-N29). This research was supported by the Faculty of Environmental, Regional and Educational Sciences (URBI), University of Graz, as well as the Federal Ministry of Science, Research and Economy (BMWFW) by funding the OeAD Grant Marietta Blau. This work was partially supported (JMG and SH) by the project MULTI-SDM (CGL2015-66583- R, MINECO/FEDER). DB was supported by the PALEOSTRAT (CGL2015-69699-R) project funded by the Spanish Ministry of Economy and Competitiveness (MINECO)

    Equatorial Atlantic Ocean dynamics in a coupled ocean–atmosphere model simulation

    Get PDF
    The ocean temperatures and zonal currents at the equatorial Atlantic simulated by an improved version of the Brazilian earth system model (BESM), with changes in the cloud cover scheme and optical properties of the atmospheric component, are analyzed and compared to those obtained from a previous version of BESM and also from other seven selected CMIP5 models. It is shown that this updated version of BESM, despite some persistent biases, more accurately represents the surface temperature variation at the Equator and the equatorial thermocline east–west slope. These improvements are associated to a more realistic seasonal cycle achieved for the Atlantic equatorial undercurrent, as well as sea surface temperatures and zonal wind stress. The better simulation of the equatorial undercurrent is, in its turn, credited to a more realistic representation of the surface wind position and strength at the tropical Atlantic by the coupled model. With many of the systematic errors noticed in the previous version of the model alleviated, this version of BESM can be considered as a useful tool for modelers involved in Atlantic variability studies

    Very extreme seasonal precipitation in the NARCCAP ensemble: model performance and projections

    Full text link
    Seasonal extreme daily precipitation is analyzed in the ensemble of NARCAPP regional climate models. Significant variation in these models' abilities to reproduce observed precipitation extremes over the contiguous United States is found. Model performance metrics are introduced to characterize overall biases, seasonality, spatial extent and the shape of the precipitation distribution. Comparison of the models to gridded observations that include an elevation correction is found to be better than to gridded observations without this correction. A complicated model weighting scheme based on model performance in simulating observations is found to cause significant improvements in ensemble mean skill only if some of the models are poorly performing outliers. The effect of lateral boundary conditions are explored by comparing the integrations driven by reanalysis to those driven by global climate models. Projected mid-century future changes in seasonal precipitation means and extremes are presented and discussions of the sources of uncertainty and the mechanisms causing these changes are presented. © 2012 The Author(s)
    corecore