25 research outputs found

    Three years of experience with the STELLA robotic observatory

    Get PDF
    Since May 2006, the two STELLA robotic telescopes at the Izana observatory in Tenerife, Spain, delivered an almost uninterrupted stream of scientific data. To achieve such a high level of autonomous operation, the replacement of all troubleshooting skills of a regular observer in software was required. Care must be taken on error handling issues and on robustness of the algorithms used. In the current paper, we summarize the approaches we followed in the STELLA observatory

    Stellar rotation, binarity, and lithium in the open cluster IC4756

    Full text link
    An important aspect in the evolutionary scenario of cool stars is their rotation and the rotationally induced magnetic activity and interior mixing. Stars in open clusters are particularly useful tracers for these aspects because of their known ages. We aim to characterize the open cluster IC4756 and measure stellar rotation periods and surface differential rotation for a sample of its member stars. Thirty-seven cluster stars were observed continuously with the CoRoT satellite for 78 days in 2010. Follow-up high-resolution spectroscopy of the CoRoT targets and deep Str\"omgren uvbyβuvby\beta and Hα\alpha photometry of the entire cluster were obtained with our robotic STELLA facility and its echelle spectrograph and wide-field imager, respectively. We determined high-precision photometric periods for 27 of the 37 CoRoT targets and found values between 0.155 and 11.4 days. Twenty of these are rotation periods. Twelve targets are spectroscopic binaries of which 11 were previously unknown; orbits are given for six of them. Six targets were found that show evidence of differential rotation with ΔΩ/Ω\Delta\Omega/\Omega in the range 0.04-0.15. Five stars are non-radially pulsating stars with fundamental periods of below 1d, two stars are semi-contact binaries, and one target is a micro-flaring star that also shows rotational modulation. Nine stars in total were not considered members because of much redder color(s) and deviant radial velocities with respect to the cluster mean. Hα\alpha photometry indicates that the cluster ensemble does not contain magnetically over-active stars. The cluster average metallicity is -0.08±\pm0.06 (rms) and its logarithmic lithium abundance for 12 G-dwarf stars is 2.39±\pm0.17 (rms). [...]Comment: A&A, in pres

    FK Comae Berenices, King of Spin: The COCOA-PUFS Project

    Get PDF
    COCOA-PUFS is an energy-diverse, time-domain study of the ultra-fast spinning, heavily spotted, yellow giant FK Com (HD117555; G4 III). This single star is thought to be a recent binary merger, and is exceptionally active by measure of its intense ultraviolet and X-ray emissions, and proclivity to flare. COCOA-PUFS was carried out with Hubble Space Telescope in the UV (120-300 nm), using mainly its high-performance Cosmic Origins Spectrograph, but also high-precision Space Telescope Imaging Spectrograph; Chandra X-ray Observatory in the soft X-rays (0.5-10 keV), utilizing its High-Energy Transmission Grating Spectrometer; together with supporting photometry and spectropolarimetry in the visible from the ground. This is an introductory report on the project. FK Com displayed variability on a wide range of time scales, over all wavelengths, during the week-long main campaign, including a large X-ray flare; "super-rotational broadening" of the far-ultraviolet "hot-lines" (e.g., Si IV 139 nm (T~80,000 K) together with chromospheric Mg II 280 nm and C II 133 nm (10,000-30,000 K); large Doppler swings suggestive of bright regions alternately on advancing and retreating limbs of the star; and substantial redshifts of the epoch-average emission profiles. These behaviors paint a picture of a highly extended, dynamic, hot (10 MK) coronal magnetosphere around the star, threaded by cooler structures perhaps analogous to solar prominences, and replenished continually by surface activity and flares. Suppression of angular momentum loss by the confining magnetosphere could temporarily postpone the inevitable stellar spindown, thereby lengthening this highly volatile stage of coronal evolution.Comment: to be published in ApJ

    Spatially Resolved Ultraviolet Spectroscopy of the Great Dimming of Betelgeuse

    Get PDF
    The bright supergiant, Betelgeuse (Alpha Orionis, HD 39801) experienced a visual dimming during 2019 December and the first quarter of 2020 reaching an historic minimum 2020 February 7-13. During 2019 September-November, prior to the optical dimming event, the photosphere was expanding. At the same time, spatially resolved ultraviolet spectra using the Hubble Space Telescope/Space Telescope Imaging Spectrograph revealed a substantial increase in the ultraviolet spectrum and Mg II line emission from the chromosphere over the southern hemisphere of the star. Moreover, the temperature and electron density inferred from the spectrum and C II diagnostics also increased in this hemisphere. These changes happened prior to the Great Dimming Event. Variations in the Mg II k-line profiles suggest material moved outwards in response to the passage of a pulse or acoustic shock from 2019 September through 2019 November. It appears that this extraordinary outflow of material from the star, likely initiated by convective photospheric elements, was enhanced by the coincidence with the outward motions in this phase of the \sim400 day pulsation cycle. These ultraviolet observations appear to provide the connecting link between the known large convective cells in the photosphere and the mass ejection event that cooled to form the dust cloud in the southern hemisphere imaged in 2019 December, and led to the exceptional optical dimming of Betelgeuse in 2020 February.Comment: 11 pages, 8 figures, Astrophysical Journal, accepte

    The STELLA Robotic Observatory on Tenerife

    Get PDF
    The Astrophysical Institute Potsdam (AIP) and the Instituto de Astrofísica de Canarias (IAC) inaugurated the robotic telescopes STELLA-I and STELLA-II (STELLar Activity) on Tenerife on May 18, 2006. The observatory is located on the Izaña ridge at an elevation of 2400 m near the German Vacuum Tower Telescope. STELLA consists of two 1.2 m alt-az telescopes. One telescope fiber feeds a bench-mounted high-resolution echelle spectrograph while the other telescope feeds a wide-field imaging photometer. Both scopes work autonomously by means of artificial intelligence. Not only that the telescopes are automated, but the entire observatory operates like a robot, and does not require any human presence on site

    The perihelion activity of comet 67P/Churyumov-Gerasimenko as seen by robotic telescopes

    Get PDF
    Around the time of its perihelion passage the observability of 67P/Churyumov-Gerasimenko from Earth was limited to very short windows each morning from any given site, due to the low solar elongation of the comet. The peak in the comet's activity was therefore difficult to observe with conventionally scheduled telescopes, but was possible where service/queue scheduled mode was possible, and with robotic telescopes. We describe the robotic observations that allowed us to measure the total activity of the comet around perihelion, via photometry (dust) and spectroscopy (gas), and compare these results with the measurements at this time by Rosetta's instruments. The peak of activity occurred approximately two weeks after perihelion. The total brightness (dust) largely followed the predictions from Snodgrass et al. (2013), with no significant change in total activity levels from previous apparitions. The CN gas production rate matched previous orbits near perihelion, but appeared to be relatively low later in the year

    Reflectivity of Venus's Dayside Disk During the 2020 Observation Campaign: Outcomes and Future Perspectives

    Get PDF
    We performed a unique Venus observation campaign to measure the disk brightness of Venus over a broad range of wavelengths in 2020 August and September. The primary goal of the campaign was to investigate the absorption properties of the unknown absorber in the clouds. The secondary goal was to extract a disk mean SO2 gas abundance, whose absorption spectral feature is entangled with that of the unknown absorber at ultraviolet wavelengths. A total of three spacecraft and six ground-based telescopes participated in this campaign, covering the 52-1700 nm wavelength range. After careful evaluation of the observational data, we focused on the data sets acquired by four facilities. We accomplished our primary goal by analyzing the reflectivity spectrum of the Venus disk over the 283-800 nm wavelengths. Considerable absorption is present in the 350-450 nm range, for which we retrieved the corresponding optical depth of the unknown absorber. The result shows the consistent wavelength dependence of the relative optical depth with that at low latitudes, during the Venus flyby by MESSENGER in 2007, which was expected because the overall disk reflectivity is dominated by low latitudes. Last, we summarize the experience that we obtained during this first campaign, which should enable us to accomplish our second goal in future campaigns

    Betelgeuse: Long Secondary Period, a Fundamental Mode and Overtones

    No full text
    Betelgeuse is the brightest Red Supergiant (RSG) in the sky and thus has been studied over decades. Photometrically, a funda- mental pulsation mode (FM) at a period P ≈400 d and a long, secondary period (LSP) with still disputed origin at P ≈2400 d have been found. The Leibniz Institute for Astrophysics Potsdam (AIP) monitors Betelgeuse almost nightly since more than a decade with its robotic spectroscopic telescope STELLA, collecting R≈55000 spectra covering wavelength ranges from 390-860 nm. This proceeding reports about radial-velocity data, periods found within and their connection to photometric measurements

    Time series Doppler imaging using STELLA

    No full text
    corecore