44 research outputs found

    Vitamin D Supplementation and Hemoglobin Levels in Hypertensive Patients

    Get PDF
    Epidemiological evidence suggests that circulating 25-hydroxyvitamin D (25OHD) levels are inversely associated with hemoglobin (Hb) levels and anemia risk. We evaluated whether vitamin D supplementation improves Hb levels and reduces anemia risk in hypertensive patients. Two hundred patients with 25OHD levels <75 nmol/L who attended the Styrian Vitamin D Hypertension Trial were included, of whom 188 completed the trial. Patients randomly received 2800 IU vitamin D3 daily or a matching placebo for eight weeks. Initially, the prevalence of anemic status (Hb levels <12.5 g/dL) and deficient 25OHD levels (<30 nmol/L) was 6.5% and 7.5%, respectively. All anemic patients had 25OHD levels >50 nmol/L. The mean (95% confidence interval) vitamin D effect on Hb levels was 0.04 (−0.14 to 0.22) g/dL (). Moreover, vitamin D treatment did not influence anemic status significantly (). Likewise, vitamin D had no significant effect on Hb levels in the subgroups of anemic patients or in patients with initial 25OHD levels <30 nmol/L. In conclusion, a daily vitamin D supplement of 2800 IU for eight weeks did not improve Hb levels or anemic status in hypertensive patients. Future trials should focus on anemic patients with deficient 25OHD levels (e.g., <30 nmol/L). This trial is registered with clinicaltrials.gov [NCT02136771]

    The effects of positive end-expiratory pressure on cardiac function: a comparative echocardiography-conductance catheter study.

    Get PDF
    BACKGROUND Echocardiographic parameters of diastolic function depend on cardiac loading conditions, which are altered by positive pressure ventilation. The direct effects of positive end-expiratory pressure (PEEP) on cardiac diastolic function are unknown. METHODS Twenty-five patients without apparent diastolic dysfunction undergoing coronary angiography were ventilated noninvasively at PEEPs of 0, 5, and 10 cmH2O (in randomized order). Echocardiographic diastolic assessment and pressure-volume-loop analysis from conductance catheters were compared. The time constant for pressure decay (τ) was modeled with exponential decay. End-diastolic and end-systolic pressure volume relationships (EDPVRs and ESPVRs, respectively) from temporary caval occlusion were analyzed with generalized linear mixed-effects and linear mixed models. Transmural pressures were calculated using esophageal balloons. RESULTS τ values for intracavitary cardiac pressure increased with the PEEP (n = 25; no PEEP, 44 ± 5 ms; 5 cmH2O PEEP, 46 ± 6 ms; 10 cmH2O PEEP, 45 ± 6 ms; p < 0.001). This increase disappeared when corrected for transmural pressure and diastole length. The transmural EDPVR was unaffected by PEEP. The ESPVR increased slightly with PEEP. Echocardiographic mitral inflow parameters and tissue Doppler values decreased with PEEP [peak E wave (n = 25): no PEEP, 0.76 ± 0.13 m/s; 5 cmH2O PEEP, 0.74 ± 0.14 m/s; 10 cmH2O PEEP, 0.68 ± 0.13 m/s; p = 0.016; peak A wave (n = 24): no PEEP, 0.74 ± 0.12 m/s; 5 cmH2O PEEP, 0.7 ± 0.11 m/s; 10 cmH2O PEEP, 0.67 ± 0.15 m/s; p = 0.014; E' septal (n = 24): no PEEP, 0.085 ± 0.016 m/s; 5 cmH2O PEEP, 0.08 ± 0.013 m/s; 10 cmH2O PEEP, 0.075 ± 0.012 m/s; p = 0.002]. CONCLUSIONS PEEP does not affect active diastolic relaxation or passive ventricular filling properties. Dynamic echocardiographic filling parameters may reflect changing loading conditions rather than intrinsic diastolic function. PEEP may have slight positive inotropic effects. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT02267291 , registered 17. October 2014

    The Synergistic Interplay between Vitamins D and K for Bone and Cardiovascular Health: A Narrative Review

    Get PDF
    Vitamins D and K are both fat-soluble vitamins and play a central role in calcium metabolism. Vitamin D promotes the production of vitamin K-dependent proteins, which require vitamin K for carboxylation in order to function properly. The purpose of this review is to summarize available evidence of the synergistic interplay between vitamins D and K on bone and cardiovascular health. Animal and human studies suggest that optimal concentrations of both vitamin D and vitamin K are beneficial for bone and cardiovascular health as supported by genetic, molecular, cellular, and human studies. Most clinical trials studied vitamin D and K supplementation with bone health in postmenopausal women. Few intervention trials studied vitamin D and K supplementation with cardiovascular-related outcomes. These limited studies indicate that joint supplementation might be beneficial for cardiovascular health. Current evidence supports the notion that joint supplementation of vitamins D and K might be more effective than the consumption of either alone for bone and cardiovascular health. As more is discovered about the powerful combination of vitamins D and K, it gives a renewed reason to eat a healthy diet including a variety of foods such as vegetables and fermented dairy for bone and cardiovascular health

    Vitamin D testing and treatment: a narrative review of current evidence

    Get PDF
    Vitamin D testing and treatment is a subject of controversial scientific discussions, and it is challenging to navigate through the expanding vitamin D literature with heterogeneous and partially opposed opinions and recommendations. In this narrative review, we aim to provide an update on vitamin D guidelines and the current evidence on the role of vitamin D for human health with its subsequent implications for patient care and public health issues. Vitamin D is critical for bone and mineral metabolism, and it is established that vitamin D deficiency can cause rickets and osteomalacia. While many guidelines recommend target serum 25-hydroxyvitamin D (25[OH]D) concentrations of ≥50 nmol/L (20 ng/mL), the minimum consensus in the scientific community is that serum 25(OH)D concentrations below 25–30 nmol/L (10–12 ng/mL) must be prevented and treated. Using this latter threshold of serum 25(OH)D concentrations, it has been documented that there is a high worldwide prevalence of vitamin D deficiency that may require public health actions such as vitamin D food fortification. On the other hand, there is also reason for concern that an exploding rate of vitamin D testing and supplementation increases costs and might potentially be harmful. In the scientific debate on vitamin D, we should consider that nutrient trials differ from drug trials and that apart from the opposed positions regarding indications for vitamin D treatment we still have to better characterize the precise role of vitamin D for human health

    The effect of vitamin D supplementation on plasma non-oxidised PTH in a randomised clinical trial

    Get PDF
    Objective: PTH can be oxidised in vivo, rendering it biologically inactive. Non-oxidised PTH (n-oxPTH) may therefore give a better image of the hormonal status of the patient. While vitamin D supplementation decreases total PTH (tPTH) concentration, the effect on n-oxPTH concentration is unexplored. We investigated the effect of vitamin D on n-oxPTH concentration in comparison to tPTH and compared the correlations between parameters of calcium, bone and lipid metabolism with n-oxPTH and tPTH. Methods: N-oxPTH was measured in 108 vitamin D-insufficient (25(O H)D <75 nmol/L) hypertensive patients, treated with vitamin D (2800 IE daily) or placebo for 8 weeks in the Styrian Vitamin D Hypertension Trial (NCT02136771). We calculated the treatment effect and performed correlation analyses of n-oxPTH and tPTH with parameters of calcium, bone and lipid metabolism and oxidative stress. Results: After treatment, compared to placebo, 25(OH)D concentrations increased, tPTH decreased by 9% (P < 0.001), n-oxPTH by 7% (P = 0.025) and the ratio of n-oxPTH/tPTH increased (P = 0.027). Changes in phosphate and HDL concentration correlated with changes in n-oxPTH, but not tPTH. Conclusions: tPTH and n-oxPTH decrease upon vitamin D supplementation. Our study suggests that vitamin D supplementation reduces the oxidation of PTH, as we observed a small but significant increase in the non-oxidised proportion of PTH upon treatment. In addition, we found that changes in phosphate and HDL concentration showed a relationship with changes in n-oxPTH, but not tPTH. This may be explained by the biological activity of n-oxPTH. Further research should be carried out to establish the clinical relevance of n-oxPTH

    Are soluble ST2 levels influenced by vitamin D and/or the seasons?

    Get PDF
    Objective: Cardiovascular disease manifestation and several associated surrogate markers, such as vitamin D, have shown substantial seasonal variation. A promising cardiovascular biomarker, soluble ST2 (sST2), has not been investigated in this regard – we therefore determined if systemic levels of sST2 are affected by seasonality and/or vitamin D in order to investigate their clinical interrelation and usability. Design: sST2 levels were measured in two cohorts involving hypertensive patients at cardiovascular risk, the Styrian Vitamin D Hypertension Trial (study A; RCT design, 8 weeks 2800 IU cholecalciferol daily) and the Ludwigshafen Risk and Cardiovascular Health Study (LURIC; study B; cross-sectional design). Methods: The effects of a vitamin D intervention on sST2 levels were determined in study A using ANCOVA, while seasonality of sST2 levels was determined in study B using ANOVA. Results: The concentrations of sST2 remained unchanged by a vitamin D intervention in study A, with a mean treatment effect (95% confidence interval) of 0.1 (−0.6 to 0.8) ng/mL; P = 0.761), despite a rise in 25(OH)D (11.3 (9.2–13.5) ng/mL; P < 0.001) compared to placebo. In study B, seasonal variations were present in 25(OH)D levels in men and women with or without heart failure (P < 0.001 for all subgroups), while sST2 levels remained unaffected by the seasons in all subgroups. Conclusions: Our study provides the first evidence that systemic sST2 levels are not interrelated with vitamin D levels or influenced by the seasons in subjects at cardiovascular risk

    Effect of genetically low 25-hydroxyvitamin D on mortality risk: Mendelian randomization analysis in 3 large European cohorts

    Get PDF
    Source at https://doi.org/10.3390/nu11010074.The aim of this study was to determine if increased mortality associated with low levels of serum 25-hydroxyvitamin D (25(OH)D) reflects a causal relationship by using a Mendelian randomisation (MR) approach with genetic variants in the vitamin D synthesis pathway. Individual participant data from three European cohorts were harmonized with standardization of 25(OH)D according to the Vitamin D Standardization Program. Most relevant single nucleotide polymorphisms of the genes CYP2R1 (rs12794714, rs10741657) and DHCR7/NADSYN1 (rs12785878, rs11234027), were combined in two allelic scores. Cox proportional hazards regression models were used with the ratio estimator and the delta method for calculating the hazards ratio (HR) and standard error of genetically determined 25(OH)D effect on all-cause mortality. We included 10,501 participants (50.1% females, 67.1±10.1 years) of whom 4003 died during a median follow-up of 10.4 years. The observed adjusted HR for all-cause mortality per decrease in 25(OH)D by 20 nmol/L was 1.20 (95% CI: 1.15–1.25). The HR per 20 nmol/L decrease in genetically determined 25(OH)D was 1.32 (95% CI: 0.80–2.24) and 1.35 (95% CI of 0.81 to 2.37) based on the two scores. In conclusion, the results of this MR study in a combined sample from three European cohort studies provide further support for a causal relationship between vitamin D deficiency and increased all-cause mortality. However, as the current study, even with ~10,000 participants, was underpowered for the study of the effect of the allele score on mortality, larger studies on genetics and mortality are needed to improve the precision

    Rationale and Plan for Vitamin D Food Fortification : A Review and Guidance Paper

    Get PDF
    Vitamin D deficiency can lead to musculoskeletal diseases such as rickets and osteomalacia, but vitamin D supplementation may also prevent extraskeletal diseases such as respiratory tract infections, asthma exacerbations, pregnancy complications and premature deaths. Vitamin D has a unique metabolism as it is mainly obtained through synthesis in the skin under the influence of sunlight (i.e., ultraviolet-B radiation) whereas intake by nutrition traditionally plays a relatively minor role. Dietary guidelines for vitamin D are based on a consensus that serum 25-hydroxyvitamin D (25[OH]D) concentrations are used to assess vitamin D status, with the recommended target concentrations ranging from >= 25 to >= 50 nmol/L (>= 10->= 20 ng/mL), corresponding to a daily vitamin D intake of 10 to 20 mu g (400-800 international units). Most populations fail to meet these recommended dietary vitamin D requirements. In Europe, 25(OH)D concentrations <30 nmol/L (12 ng/mL) and <50 nmol/L (20 ng/mL) are present in 13.0 and 40.4% of the general population, respectively. This substantial gap between officially recommended dietary reference intakes for vitamin D and the high prevalence of vitamin D deficiency in the general population requires action from health authorities. Promotion of a healthier lifestyle with more outdoor activities and optimal nutrition are definitely warranted but will not erase vitamin D deficiency and must, in the case of sunlight exposure, be well balanced with regard to potential adverse effects such as skin cancer. Intake of vitamin D supplements is limited by relatively poor adherence (in particular in individuals with low-socioeconomic status) and potential for overdosing. Systematic vitamin D food fortification is, however, an effective approach to improve vitamin D status in the general population, and this has already been introduced by countries such as the US, Canada, India, and Finland. Recent advances in our knowledge on the safety of vitamin D treatment, the dose-response relationship of vitamin D intake and 25(OH)D levels, as well as data on the effectiveness of vitamin D fortification in countries such as Finland provide a solid basis to introduce and modify vitamin D food fortification in order to improve public health with this likewise cost-effective approach.Peer reviewe
    corecore