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Abstract

Objective: PTH can be oxidised in vivo, rendering it biologically inactive. Non-oxidised 
PTH (n-oxPTH) may therefore give a better image of the hormonal status of the patient. 
While vitamin D supplementation decreases total PTH (tPTH) concentration, the effect 
on n-oxPTH concentration is unexplored. We investigated the effect of vitamin D on 
n-oxPTH concentration in comparison to tPTH and compared the correlations between 
parameters of calcium, bone and lipid metabolism with n-oxPTH and tPTH.
Methods: N-oxPTH was measured in 108 vitamin D-insufficient (25(OH)D <75 nmol/L) 
hypertensive patients, treated with vitamin D (2800 IE daily) or placebo for 8 weeks in the 
Styrian Vitamin D Hypertension Trial (NCT02136771). We calculated the treatment effect 
and performed correlation analyses of n-oxPTH and tPTH with parameters of calcium, 
bone and lipid metabolism and oxidative stress.
Results: After treatment, compared to placebo, 25(OH)D concentrations increased, tPTH 
decreased by 9% (P < 0.001), n-oxPTH by 7% (P = 0.025) and the ratio of n-oxPTH/tPTH 
increased (P = 0.027). Changes in phosphate and HDL concentration correlated with 
changes in n-oxPTH, but not tPTH.
Conclusions: tPTH and n-oxPTH decrease upon vitamin D supplementation. Our study 
suggests that vitamin D supplementation reduces the oxidation of PTH, as we observed 
a small but significant increase in the non-oxidised proportion of PTH upon treatment. 
In addition, we found that changes in phosphate and HDL concentration showed a 
relationship with changes in n-oxPTH, but not tPTH. This may be explained by the 
biological activity of n-oxPTH. Further research should be carried out to establish the 
clinical relevance of n-oxPTH.
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Introduction

Parathyroid hormone (PTH) plays a critical role in 
maintaining adequate serum calcium homeostasis. It 
increases serum calcium by stimulating bone resorption, 
promoting phosphate excretion, converting vitamin D to 
its active form and by limiting calcium excretion. The PTH 
molecule can be oxidised at methionine residues 8 and 
18 (1). This results in an inability to activate the PTH-1 
receptor, rendering the hormone biologically inactive (1, 
2, 3, 4). The oxidation of PTH occurs only in vivo and does 
not progress after blood withdrawal (5).

Over the past decades, PTH assays have improved 
greatly. The first-generation PTH assays were  
radioimmunoassays and used a single antibody to 
quantify PTH levels in the blood. However, these assays 
measured not only intact PTH, but also PTH fragments  
with no biological activity. Subsequently, a second-
generation immunoassay was developed, using the 
sandwich principle with two antibodies directed close 
to the C- and N-terminal parts. This resulted in a major 
improvement in diagnostic and prognostic use of PTH 
measurements. A third-generation assay captured the full-
length PTH and had antibodies detected against the most 
proximal and distal binding sites of the hormone (6). There 
is still an ongoing debate on whether these third-generation 
assays have additional value compared to the second-
generation assays. However, not only fragmentation, but 
also the above-mentioned posttranslational oxidation 
of PTH can affect the measurements (7). The inactive 
oxidised PTH (oxPTH) cross-reacts in the frequently used 
PTH immunoassays (3, 4). Therefore, the assumption that 
the PTH measured by the third generation is biologically 
active PTH, is probably not the case, as this assay measured 
both the oxidised or non-oxidised PTH.

A newly developed method enables measurement 
of solely the non-oxidised fraction of PTH (8). This non-
oxidised PTH (n-oxPTH) can be measured by automated 
immunoassays in the eluate which remains after removal 
of oxidised PTH by using an oxPTH affinity column.

As only n-oxPTH activates the PTH-1 receptor, it 
may reflect the hormonal function of PTH better than 
the currently measured PTH, which is a combination of 
oxidised and non-oxidised PTH. As a large fraction of 
circulating PTH is oxidised, this total PTH (tPTH) may 
rather reflect oxidative stress-related pathology (9). Tepel 
et  al. showed that haemodialysis patients with higher 
n-oxPTH concentrations had an increased survival. Per 
contra, tPTH is associated with mortality in both chronic 
kidney disease patients and in healthy individuals (10, 11).  

In addition, Seiler-Mussler et al. recently concluded that 
currently measured PTH is associated with all-cause 
mortality, in contrast to n-oxPTH in chronic kidney disease 
(12). This opposite relationship supports the rationale that 
n-oxPTH may reflect the hormonal status more accurately.

PTH secretion is suppressed by 1,25(OH)2Vitamin D 
and to a lesser extent by 25(OH)Vitamin D (25(OH)D) (13).  
Hence, 25(OH)D deficiency leads to increased PTH levels 
in order to prevent deranging calcium homeostasis. 
Conversely, PTH secretion is diminished after vitamin D 
supplementation.

In this study, we aimed to investigate the effect of  
vitamin D supplementation on the n-oxPTH 
concentrations in comparison to tPTH in a population 
with normal renal function. For this purpose, we 
measured n-oxPTH in the Styrian Hypertension Study, a 
vitamin D randomised controlled trial (14). In addition, 
we investigated the relationship between bone resorption 
and formation markers, markers of lipid metabolism and 
parameters of mineral metabolism and oxidative stress 
with n-oxPTH and tPTH.

Subjects and methods

Study design and participants

Samples from the Styrian Vitamin D Hypertension Trial, 
a single-centre, double-blind, placebo-controlled, parallel-
group study performed at the Medical University of Graz, 
Austria (NCT02136771; ClinicalTrials.gov), with sufficient 
material for n-oxPTH measurements were used (14).

The participants were aged 18  years or older, were 
diagnosed with arterial hypertension and had 25(OH)
D concentrations <75 nmol/L (according to the assay 
used in the trial: IDS-iSYS 25-hydroxyvitamin assay; 
Immunodiagnostic Systems Ltd., Boldon, UK). Arterial 
hypertension was defined as an office blood pressure 
of systolic ≥140 mmHg or diastolic ≥90 mmHg, a mean 
24-h ambulatory blood pressure monitoring of systolic 
≥125 mmHg or diastolic ≥80 mmHg, a home blood 
pressure of systolic ≥130 mmHg or diastolic ≥85 mmHg or 
ongoing antihypertensive treatment. For study details, we 
refer to the article published by Pilz et al. (14). Exclusion 
criteria included hypercalcaemia, an estimated glomerular 
filtration rate <15 mL/min per 1.73 m2, a regular intake 
of >880 IU of vitamin D daily during the last 4 weeks in 
addition to the study medication, 24-h systolic blood 
pressure >160 mmHg or <120 mmHg, 24-h diastolic blood 
pressure >100 mmHg, pregnant or lactating women, 
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acute coronary syndrome, cerebrovascular events within 
the previous 2  weeks, diseases with an estimated life 
expectancy of less than 1 year, any clinically significant 
acute disease requiring drug treatment, chemotherapy 
or radiation therapy and a change in antihypertensive 
treatment during the previous 4 weeks or planned change 
of antihypertensive treatment.

Written informed consent was obtained from all 
study participants. The study was approved by the Ethics 
Committee of the Medical University of Graz, Austria and 
was designed to comply with the Declaration of Helsinki.

Intervention

Eligible participants were randomly assigned to receive 
either 2800 IU of vitamin D3 (Oleovit D3, Fresenius Kabi 
Austria, Austria) or a matching placebo administered orally 
by seven oily drops per day for 8 weeks. Randomisation 
was carried out using Web-based randomisation software 
(Randomizer). All investigators and authors enrolling 
participants, collecting data and assigning intervention 
were masked to participant allocation. The study took 
place between June 2011 and August 2014. Detailed 
information was published previously (14).

Outcome measures

In this post hoc study analysis, we aimed to investigate 
the effects of vitamin D supplementation on tPTH and 
n-oxPTH concentrations between groups, adjusted for 
baseline values. In addition, we studied the correlation 
between n-oxPTH, tPTH concentrations, markers of 
bone turnover, lipid metabolism, calcium and phosphate 
homeostasis and asymmetric dimethylarginine (ADMA), a 
downstream marker of oxidative stress

Biochemical analysis

EDTA plasma samples were obtained after an overnight 
fast and were centrifuged and stored at −80°C until 
determination. 25(OH)D3 was assessed by isotope dilution 
liquid chromatography-tandem mass spectrometry at 
the Endocrine Laboratory of the VU University Medical 
Center, as described previously (15). The limit of 
quantitation was 1.2 nmol/L and the intra- and inter-
assay variation (CV) was 3 and 6%, respectively. PTH 
concentration was measured in EDTA plasma using an 
automated second-generation PTH immunoassay (Elecsys, 
Roche Diagnostics) with an intra- and inter-assay CV of 
<2.7 and <6.5%, respectively. N-oxPTH concentration 

was determined using an oxPTH affinity column (A1112; 
Immundiagnostik AG, Bensheim, Germany). These 
affinity columns are filled with an antibody containing 
slurry that specifically binds the oxidised form of PTH 
and after being centrifuged, the eluate contains only the 
non-oxidised form of PTH (8). The columns were filled 
with 300 μL EDTA plasma and incubated end-over-end 
at room temperature for 1 h. Afterwards, we determined 
n-oxPTH in the eluate using a second-generation PTH 
immunoassay (Elecsys, Roche Diagnostics). Combined 
with use of the n-oxPTH columns the inter-assay CV 
<2 pmol/L and >2 pmol/L is 10 and 2.4%, respectively (5).

Total osteocalcin (OC), a bone formation marker, was 
measured by an electrochemiluminescence immunoassay 
(Elecsys, Roche Diagnostics). The intra- and inter-assay 
CV was 0.5 and 1.4%, respectively. CTX, a bone resorption 
marker, was measured by electrochemiluminescence 
immunoassay (Elecsys, Roche Diagnostics). The intra- 
and inter-assay CV was 2.0 and 4.2%, respectively. 
Concentrations of bone-specific alkaline phosphatase, also 
a marker of bone formation (bALP; inter-assay CV: 5.2%), 
were determined by a spectrophotometric immunoassay 
(IDS-ISYS Ostase BAP; Immunodiagnostic Systems 
Ltd. (IDS Ltd.), Boldon, Tyne & Wear, UK). Procollagen 
type 1 amino-terminal propeptide (P1NP), also a bone 
formation marker, was measured by an automated 
electrochemiluminescence immunoassay (Elecsys, Roche 
Diagnostics) with an inter-assay CV of 2.7%. To measure 
1,25(OH)2D3, a chemiluminescence immunoassay  
(IDS-iSYS 1,25VitDXp; Immunodiagnostic Systems Ltd., 
Boldon, UK) was used, of which the intra- and inter-assay 
CV was 6.4–12.1% and 6.6–9.6%, respectively. Vitamin 
D-binding protein was measured by the Quantikine Human 
Vitamin D-Binding Protein immunoassay (R&D Systems, 
Inc.). Intra- and inter-assay coefficients of variation were 
<5.1 and <7.4%, respectively. FGF23 was measured by a 
multi-matrix ELISA (FGF23 (C-terminal) ELISA; Biomedica 
Medizinprodukte GmbH & CO KG, Vienna, Austria). The 
intra-assay and inter-assay coefficients of variation (CVs) 
were ≤12 and ≤10%, respectively. The effect of vitamin D 
supplementation on bone turnover markers and FGF23 
in this cohort was published previously (16, 17). Total 
cholesterol, HDL and triglycerides were measured using an 
enzymatic colorimetric assay (Elecsys, Roche Diagnostics). 
LDL was calculated according to the Friedewald equation. 
Asymmetric dimethylarginine (ADMA), a downstream 
marker of oxidative stress, was measured with reversed-
phase HPLC (18). Assay specifications and the effect of 
vitamin D supplementation on ADMA in this cohort were 
published previously (19).
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Statistical analysis

Data following a normal distribution are shown as means 
with standard deviation (s.d.), data following a skewed 
distribution are shown as medians with interquartile 
ranges. Skewed variables were log transformed prior to 
parametric analyses. At baseline, the Mann–Whitney 
U test was used to assess the differences between the 
vitamin D-treated group and placebo-treated group. 
In order to compare the decrease in n-oxPTH with the 
decrease in tPTH, the Mann–Whitney U test was also 
used between the percentage differences. Pearson’s 
and Spearman’s correlation coefficients were used to 
evaluate the relationship between baseline parameters, 
n-oxPTH and tPTH. Spearman’s correlation coefficient 
was used when skewed variables were not normally 
distributed after log transformation. In addition, 
Spearman’s correlation coefficient was used to assess 
the correlation between the change, calculated as the 
difference between the parameter measured at the final 
study visit and the same parameter at the baseline study 
visit, in n-oxPTH, tPTH and the n-oxPTH/tPTH ratio and 
several parameters in the vitamin D-treated group. These 
calculated changes are marked with ‘∆’. Also, Bonferroni 
corrected values were reported. Analysis of covariance 
(ANCOVA) with adjustment for baseline values was 
used to test for differences in the outcome variables  
(i.e. 25(OH)D3, n-oxPTH, tPTH, plasma calcium, 24-h calcium 
excretion, 1,25OH2D, biologically available 25(OH)D3, the  
n-oxPTH/tPTH ratio and ADMA). Values more than 3SD 
from the mean were deemed as outliers, they were removed 
and the analysis repeated. This is marked in the results 
section. Biologically available 25(OH)D3 was calculated 
using equations adapted from Vermeulen et al. (20). For 
the adapted formula and an example of the calculation of 
bioavailable 25(OH)D, we refer to the supplement of Powe 
et al. (21). The percentage change of a given parameter in 
the vitamin D-treated group was calculated by dividing 
the change from baseline after treatment by its respective 
baseline value.

A P value <0.05 was considered statistically significant. 
All analyses were performed using SPSS version 22 (SPSS).

Results

The trial was completed by 188 participants; the 
participant flow chart was published previously (14). 
For the current study, we included 108 participants (53 
in treatment group and 55 in placebo group) of which 

sufficient material was present for n-oxPTH measurement 
at baseline and follow-up. The baseline characteristics of 
the included patients are shown in Table  1. There was 
no significant difference between the vitamin D- and 
placebo-treated group at baseline.

Cross-sectional analysis

The Pearson correlation coefficients between n-oxPTH, 
tPTH, bone formation markers (bALP, osteocalcin, P1NP), 
a bone resorption marker (CTX) and FGF23 are shown 
in Table  2. Spearman correlation analysis for assessing 
non-linear relationships are shown in Supplementary 
Table 1 and Supplementary Table 2 (see section on 
supplementary data given at the end of this article); 
these did not considerably differ from the results of the 
Pearson correlation analysis. tPTH and n-oxPTH showed 
a significant correlation (r = 0.555; P < 0.001; Fig. 1). Bone 
formation or resorption markers and FGF23 did not exhibit 
a significant correlation with either tPTH or n-oxPTH at 
baseline after Bonferroni adjustment. Table 2 also displays 
that total cholesterol, HDL, LDL and triglycerides showed 
no significant correlation with n-oxPTH or tPTH after 
Bonferroni adjustment.

The relationship between mineral metabolism 
markers, ADMA and vitamin D and tPTH and n-oxPTH is 
shown in Table 3. After Bonferroni correction, none of the 
tested parameters showed a significant correlation.

Interventional analysis

After vitamin D treatment, ANCOVA analysis revealed 
for 25(OH)D3 concentrations a mean treatment effect 
(95 % CI) of 32.4 nmol/L (25.9–38.8); P < 0.001. This can 
be seen in Table  4. Biologically available 25(OH)D also 
increased compared to the placebo group (treatment 
effect: 3.91 nmol/L (2.64–5.18); P < 0.001). Both tPTH 
and n-oxPTH decreased after vitamin D treatment 
(−0.90 (−0.40 to −1.40) pmol/L; P < 0.001; and −0.08 
(−0.01 to −0.15) pmol/L; P = 0.025, respectively). The 
decrease in tPTH and n-oxPTH (9 and 7%, respectively) 
was not significantly different (P = 0.51). The ratio 
of n-oxPTH/tPTH showed a trend for increase after 
vitamin D treatment (0.022 (0.003–0.042); P = 0.027 or 
expressed as percentage by 2.2% (0.3–4.2%)) In addition, 
1,25(OH)2D concentrations increased after treatment 
(10.6 pg/mL (3.94–17.2); P = 0.002), while plasma calcium 
concentrations and 24-h urinary calcium excretion were 
not affected. ADMA did not show a significant treatment 
effect after vitamin D supplementation.
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Correlation analysis was also applied to test whether 
the changes in several parameters before and after 
vitamin D supplementation in the vitamin D-treated 
group were correlated with ∆n-oxPTH, ∆tPTH and the 
∆n-oxPTH/tPTH ratio in the vitamin D-treated group 
and several other parameters. These results are presented 
in Table  5. What is apparent from these data is that  

the difference in serum phosphate exhibited a significant, 
inverse correlation with ∆n-oxPTH, but not with ∆tPTH 
(rho = −0.418; P = 0.002; Bonferroni adjusted: P = 0.020 
and rho = −0.314; P = 0.022; Bonferroni adjusted: 
P = 0.264, respectively). Also the ∆HDL correlated 
with ∆n-oxPTH, but not ∆tPTH (rho = 0.499; P < 0.001; 
Bonferroni adjusted: P = 0.002 and rho = 0.079; P = 0.576;  

Table 1 Baseline characteristics of participants in the vitamin D (n = 53) and placebo (n = 55)-treated groups.

Parameters All N Vitamin D N Placebo N P value

Age (years) 60.1 ± 11.9 108 59.5 ± 11.8 53 60.7 ± 12.1 55 0.384
Gender (% female) 60 108 29 53 31 55 0.863
% postmenopausal females 47 59 24 29 23 30 0.561
BMI (kg/m2) 30.0 ± 5.3 107 30.3 ± 4.9 53 29.7 ± 5.8 54 0.501
25(OH)D3 (nmol/L) 46 (25–58) 107 46 (37–58) 52 46 (30–59) 54 0.538
1,25(OH)2D (pg/mL) 48 (35–65) 107 49 (38–66) 53 42 (29–64) 54 0.153
Vitamin D binding protein  

(μg/mL)
249 ± 110 107 237 ± 108 53 258 ± 112 54 0.355

Bioavailable 25(OH)D3 (nmol/L) 5.80 (3.76–8.13) 106 6.60 (4.10–8.03) 52 5.15 (3.20–8.47) 54 0.123
Serum calcium (mmol/L) 2.26 (2.21–2.33) 108 2.26 (2.21–2.33) 53 2.26 (2.21–2.33) 55 0.824
Serum phosphate (mmol/L) 0.94 ± 0.17 108 0.92 ± 0.16 53 0.96 ± 0.17 55 0.199
24 h urinary calcium excretion 

(mmol/24 h)
3.34 (1.85–5.01) 97 3.63 (1.88–6.23) 48 2.96 (1.85–4.86) 49 0.325

N-oxPTH (pmol/L) 1.1 ± 0.3 108 1.1 ± 0.3 53 1.1 ± 0.3 55 0.340
Total PTH (pmol/L) 5.3 (4.0–6.7) 108 5.2 (4.1–6.7) 53 5.5 (3.9–6.8) 55 0.710
bALP (μg/L) 17 (13–21) 103 17 (13–21) 51 17 (13–20) 52 0.962
CTX (ng/mL) 0.19 (0.11–0.33) 100 0.19 (0.13–0.34) 50 0.18 (0.10–0.28) 50 0.647
Osteocalcin (ng/mL) 13 (10–19) 106 13 (10–18) 52 14 (9–19) 54 0.859
P1NP (ng/mL) 38 (31–52) 103 38 (29–56) 50 38 (32–49) 53 0.879
eGFR CKD-EPI (mL/min/1.73 m2) 83 ± 19 108 85 ± 18 53 81 ± 19 55 0.336
FGF23 (pmol/L) 0.83 (0.59–1.24) 107 0.77 (0.54–1.17) 53 0.89 (0.69–2.02) 54 0.069
Office systolic BP* (mmHg) 145 ± 16 107 145 ± 17 53 145 ± 16 54 0.856
Office diastolic BP* (mmHg) 87 ± 11 107 87 ± 10 53 87 ± 11 54 0.981
Ratio n-oxPTH/tPTH 0.22 ± 0.07 108 0.22 ± 0.07 53 0.22 ± 0.06 55 0.850
Total cholesterol (mg/dL) 192 ± 40 108 198 ± 39 53 186 ± 40 55 0.104
HDL (mg/dL) 55.5 (47–66) 108 54.0 (45–66) 53 56.0 (47–66) 55 0.612
LDL (mg/dL) 112 ± 35 105 117 ± 33 53 107 ± 37 52 0.137
Triglycerides (mg/dL) 110 (69–153) 108 109 (69–152) 53 110 (69–162) 55 0.996
ADMA (μmol/L) 0.70 (0.63–0.78) 108 0.69 (0.63–0.78) 53 0.71 (0.64–0.79) 55 0.247

Data are shown as mean ± s.d. or median (IQR).
*Maximum of the two arms.

Table 2 Correlations between bone turnover parameters, parameters of lipid metabolism and n-oxPTH or tPTH.

Parameters

n-oxPTH Total PTH*

Pearson’s r P value
Bonferroni adjusted  

P value Pearson’s r P value
Bonferroni adjusted  

P value

Total PTH* 0.555 <0.001 <0.001 n.a. n.a. n.a.
bALP* 0.144 0.148 1.000 0.024 0.813 1.000
CTX* −0.028 0.783 1.000 −0.060 0.552 1.000
Osteocalcin* 0.237 0.014 0.252 0.108 0.268 1.000
P1NP* 0.169 0.088 1.000 −0.029 0.774 1.000
FGF23* −0.016 0.869 1.000 0.010 0.916 1.000
Total cholesterol −0.047 0.625 1.000 0.008 0.934 1.000
HDL* 0.254 0.008 0.144 0.166 0.085 1.000
LDL −0.089 0.365 1.000 −0.021 0.831 1.000
Triglycerides* −0.216 0.025 0.450 −0.042 0.666 1.000

*Log transformed.
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Bonferroni adjusted: P = 1.0, respectively). ∆n-oxPTH/tPTH  
ratio did not show a significant correlation with the  
tested parameters.

Discussion

We determined the effect of vitamin D supplementation 
on n-oxPTH concentrations in an RCT in hypertensive 
vitamin D-insufficient patients with preserved kidney 
function and found a significant decrease in n-oxPTH 
concentration during supplementation. Moreover, the 
correlation between n-oxPTH and tPTH at baseline 
was only 0.555 (P < 0.001), indicating large individual 
differences of oxidised PTH in patients with preserved 
renal function, as can also be seen in Fig. 1.

N-oxPTH is presumed to be the biologically active 
form of PTH and may reflect the hormonal activity in a 

more accurate way, since oxidised PTH does not activate 
the PTH-1 receptor (22). Upon vitamin D treatment, 
both tPTH and n-oxPTH concentrations decreased. 
Interestingly, tPTH decreased more strongly than 
n-oxPTH. This resulted in a significantly increased ratio 
of n-oxPTH/tPTH upon supplementation. This indicates 
that vitamin D supplementation results in an increase 
in the non-oxidised fraction of PTH, or stated otherwise, 
that the oxidised proportion is reduced (Fig.  2). As the 
clinical relevance of this finding is yet to be established 
and the change in the n-oxPTH/tPTH ratio is small, no 
vast conclusions can be drawn. However, hypothetically 
this would implicate that vitamin D treatment leads to a 
reduction in the oxidation of PTH.

Caution must be applied when interpreting this ratio. 
We previously published that this ratio cannot reflect the true 
non-oxidised percentage of the tPTH, as there is no standard 
for n-oxPTH yet (5). Calculation of this ratio also showed 
poor agreement between several immunoassays. Although 
the n-oxPTH measurements are validated extensively, the 
ratio over tPTH, and hence, the percentage PTH that is free 
of oxidation, differs between several immunoassays. For this 
reason, we can measure n-oxPTH reliably; however, the ratio 
can only be used to assess changes over time.

There is a growing body of evidence about the 
protective effect of vitamin D on oxidative stress. 
Antioxidant properties of vitamin D are shown in vitro 
and in vivo, in rats as well as in humans (23, 24, 25, 26). 
PTH oxidation may, therefore, also be influenced by 
vitamin D supplementation, as is suggested by our data. 
However, there was no significant treatment effect on 
ADMA, a downstream marker of oxidative stress, in this 
study. (18, 19)

PTH stimulates bone resorption. Osteoblasts express the  
PTH-1 receptor, which is activated by PTH. Once activated,  

Figure 1
Scatterplot of tPTH and n-oxPTH at baseline (n = 108). Pearson’s r = 0.555; 
P < 0.001.

Table 3 Correlations between parameters of calcium and phosphate homeostasis, ADMA and n-oxPTH or tPTH.

Parameters

n-oxPTH Total PTH*

Pearson’s r P value
Bonferroni adjusted  

P value Pearson’s r P value
Bonferroni adjusted  

P value

25(OH)D3* −0.069 0.477 1.000 −0.056 0.564 1.000
Bioavailable 25(OH)D3* −0.062 0.526 1.000 −0.111 0.258 1.000
1,25(OH)2D* 0.179 0.065 1.000 0.215 0.026 0.572
eGFR 0.080 0.410 1.000 −0.063 0.519 1.000
Calcium −0.053 0.588 1.000 0.008 0.935 1.000
Phosphate −0.114 0.239 1.000 −0.213 0.027 0.594
UPCR 0.088 0.363 1.000 0.183 0.059 1.000
24-h urinary calcium† 0.063 0.542 1.000 −0.127 0.216 1.000
ADMA* −0.104 0.285 1.000 0.017 0.861 1.000

*Log transformed; †Spearman’s rho.
Bioavailable 25(OH)D3, biologically available 25(OH)D3; UPCR, urinary phosphate to creatinine ratio.
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osteoblasts increase their expression of RANK and 
inhibit the secretion of osteoprotegerin, resulting in the 
stimulation of osteoclast differentiation. Although PTH 
stimulates bone resorption, the level of PTH does not 
reflect bone turnover accurately. In patients with chronic 
kidney disease (CKD) with increasing PTH levels, the PTH 
concentration does not correlate well with bone turnover, 
based on bone histomorphometry (27). The presumed 
mechanism is end-organ resistance and possibly also 

posttranslational oxidation of PTH (28). In addition, a 
recent study showed that not only the PTH molecule, but 
also the PTH receptor can be oxidised (29). In this study, 
Ardura et al. used modified PTH (1-34), where methionine 
residues 8 and 18 were replaced with norleucine. This 
way, the two residues that are prone to oxidation were 
stabilised. They incubated cells with H2O2 and concluded 
that this reduced all PTH-dependent signalling pathways. 
In consequence, both oxidation of the PTH molecule and 
the receptor could contribute to the limited correlation 
between PTH and bone histomorphometry in individuals 
with increased oxidative stress.

PTH is known to lead to decreased reabsorption 
of phosphate, decreased excretion of calcium and 
stimulation of 1-alpha-hydroxylase in the kidney. In 
our study, baseline concentrations of n-oxPTH and tPTH 
were not associated with phosphate concentrations. 
Interestingly, however, in the vitamin D group, the 
change in (∆) phosphate did not show a correlation 
with ∆tPTH, but did show a significant correlation with 
∆n-oxPTH (Table 5). This lack of a relationship between 
phosphate and tPTH dynamics, in contrast to a significant 
relationship between phosphate and n-oxPTH dynamics 
may be explained by the biological activity of n-oxPTH.

N-oxPTH and tPTH did not correlate with measured 
bone turnover makers, which does not suggest an 
important role of measuring n-oxPTH for determining 
bone turnover in our population. Yet, the setting in our 

Table 4 ANCOVA for the effect of vitamin D or placebo treatment.

Parameters Group Baseline (SD/IQR) Follow-up (SD/IQR) Mean change (95% CI) Treatment effect (95% CI) P value

25(OH)D3 (nmol/L) Vitamin D, N = 52 49.0 ± 18.1 79.3 ± 19.1 30.3 (24.1–36.4) 32.4 (25.9–38.8) <0.001 
Placebo, N = 54 46.0 ± 18.5 45.3 ± 19.7 −0.72 (−4.77 to 3.32)

Total PTH (pmol/L)* Vitamin D, N = 53 5.19 (4.13–6.69) 4.64 (3.90–5.80) −0.61 (−0.96 to −0.27) −0.90 (−0.40 to −1.40)  <0.001
Placebo, N = 55 5.46 (3.92–6.66) 5.33 (4.07–7.07) 0.35 (−0.03 to 0.74)

n-oxPTH (pmol/L) Vitamin D, N = 53 1.1 ± 0.3 1.1 ± 0.3 −0.08 (−0.13 to −0.03) −0.08 (−0.01 to −0.15)  0.025
Placebo, N = 55 1.1 ± 0.3 1.1 ± 0.3 0.01 (−0.04 to 0.07)

Plasma calcium 
(mmol/L)

Vitamin D, N = 53 2.28 ± 0.10 2.27 ± 0.09 −0.01 (−0.03 to 0.02) 0.02 (−0.01 to 0.05)  0.294
Placebo, N = 55 2.27 ± 0.11 2.25 ± 0.11 −0.01 (−0.03 to 0.01)

24-h urinary calcium 
excretion 
(mmol/24 h)*

Vitamin D, N = 37 3.60 (1.45–6.25) 3.80 (1.80–6.40) 0.43 (−0.14 to 1.00) 0.66 (−0.07 to 1.39)  0.077
Placebo, N = 40 2.95 (1.90–5.40) 3.00 (1.50–4.60) −0.19 (−0.67 to 0.29)

1,25(OH)2D (pg/mL) Vitamin D, N = 53 53.5 ± 20.9 60.2 ± 25.1 6.66 (1.06–12.3) 10.6 (3.94–17.2) 0.002 
Placebo, N = 53 47.0 ± 20.9 45.3 ± 15.9 −1.12 (−5.84 to 3.59)

Vitamin D binding 
protein (μg/mL)

Vitamin D, N = 52 239 ± 108 323 ± 319 85 (−6 to 177) 12 (−88 to 111) 0.816
Placebo, N = 54 258 ± 112 315 ± 173 54 (−4 to 112)

Bioavailable  
25(OH)D3 (nmol/L)*,†

Vitamin D, N = 50 6.60 (4.08–8.01) 8.64 (6.57–12.0) 2.25 (0.90–3.60) 3.91 (2.64–5.18) <0.001
Placebo, N = 53 5.22 (3.15–8.51) 4.98 (2.94–6.87) −1.30 (−2.66 to 0.05)

Ratio n-oxPTH/tPTH Vitamin D, N = 53 0.22 ± 0.07 0.23 ± 0.08 0.009 (−0.009 to 0.027) 0.022 (0.003 to 0.042)  0.027 
Placebo, N = 55 0.22 ± 0.06 0.20 ± 0.05 −0.01 (−0.025 to 0.001)

ADMA*,† (µmol/L) Vitamin D, N = 53 0.69 (0.63–0.77) 0.73 (0.65–0.81) 0.04 (0.01–0.07) 0.008 (−0.028 to 0.045) 0.759 
Placebo, N = 54 0.72 (0.65–0.79) 0.75 (0.67–0.80) 0.02 (−0.01 to 0.05)

Data are shown as mean ± s.d. or median (IQR).
*Skewed variables for which transformed values were used in ANCOVA, but untransformed values are shown in the table; †1 outlier was excluded; this 
had no effect on the significance level of the analysis.

Figure 2
Vitamin D supplementation decreased tPTH and n-oxPTH, while the 
proportion of oxidised PTH was reduced.
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study might not be an optimal model to study these 
mechanisms and future studies in patients with renal 
failure are needed.

While some research has been carried out on the 
interrelation between plasma PTH and parameters of lipid 
metabolism, it is not completely understood. It seems 
that high concentrations of PTH, as seen in primary and 
secondary hyperparathyroidism (HPT), are accompanied 
by changes in parameters of lipid metabolism (30, 31).  
In the case of secondary HPT, these changes can be caused 
by many factors (e.g. the consequences of nephrotic 
syndrome), while in primary HPT, a more causal 
relationship seems plausible. Although study results 
are inconclusive, an improvement in lipid profile is 
frequently observed after parathyroidectomy in primary 
HPT (31, 32). The relation between HDL and n-oxPTH is 
of particular interest, as HDL has anti-oxidative properties 
(33). It is therefore interesting that we showed in our study 
a significant association between the change in n-oxPTH 
and the change in HDL after vitamin D treatment, which 
was not the case for the change in tPTH. A higher HDL 
concentration, and hence a better antioxidant status, could 
explain the positive trend with n-oxPTH. A greater focus 
on the oxidised status of PTH could produce interesting 
findings that might account for inconsistencies in earlier 
studies on PTH and lipid metabolism.

Limitations of this study include the relatively short 
treatment duration of 8 weeks, the use of a specific patient 
group (hypertensive patients) and the small number of 
patients with severe vitamin D deficiency. Hypertension 
itself can contribute to oxidative stress, which may also 
increase the proportion of oxidised PTH and lower n-oxPTH 
concentrations (34). Hence, the effect we observed on 
n-oxPTH could be an underestimation. Concerning the 
assessment of the correlation between n-oxPTH and bone 
turnover markers, our study population may not be ideal, 
individuals in this population are not expected to have 
a widely divergent rate of bone turnover. In addition, 
vitamin D deficiency was defined by measurements of 
baseline total 25(OH)D and not free 25(OH)D. Some 
researchers suggest that free 25(OH)D is a better marker 
for assessing vitamin D status (35). Also caution of 
interpretation is warranted, as this is a post hoc analysis. 
Notwithstanding these limitations, the RCT design and 
effective vitamin D treatment as well as ample inclusion 
of parameters are the key strengths of the current study.

In conclusion, we showed that both tPTH and 
n-oxPTH decrease upon vitamin D supplementation. Our 
study suggests that vitamin D supplementation affects the 
oxidation of PTH, as we observed a small but significant Ta
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increase in the non-oxidised proportion of PTH upon 
treatment. In addition, we found that changes in 
phosphate and HDL concentration showed a relationship 
with changes in n-oxPTH, but not tPTH. This may be 
explained by the biological activity of n-oxPTH. Further 
research should be carried out to establish the clinical 
relevance of n-oxPTH.
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