1,714 research outputs found

    Fractionation and fluxes of metals and radionuclides during the recycling process of phosphogypsum wastes applied to mineral CO2 sequestration

    Get PDF
    The industry of phosphoric acid produces a calcium-rich by-product known as phosphogypsum, which is usually stored in large stacks of millions of tons. Up to now, no commercial application has been widely implemented for its reuse because of the significant presence of potentially toxic contaminants. This work confirmed that up to 96% of the calcium of phosphogypsum could be recycled for CO2 mineral sequestration by a simple two-step process: alkaline dissolution and aqueous carbonation, under ambient pressure and temperature. This CO2 sequestration process based on recycling phosphogypsum wastes would help to mitigate greenhouse gasses emissions. Yet this work goes beyond the validation of the sequestration procedure; it tracks the contaminants, such as trace metals or radionuclides, during the recycling process in the phosphogypsum. Thus, most of the contaminants were transferred from raw phosphogypsum to portlandite, obtained by dissolution of the phosphogypsum in soda, and from portlandite to calcite during aqueous carbonation. These findings provide valuable information for managing phosphogypsum wastes and designing potential technological applications of the by-products of this environmentally-friendly proposal.Junta de Andalucía P10-RNM-6300, P12- RNM-226

    Inverse sampling and triangular sequential designs to compare a small proportion with a reference value

    Get PDF
    Inverse sampling and formal sequential designs may prove useful in reducing the sample size in studies where a small population proportion p is compared with a hypothesized reference proportion p0. These methods are applied to the design of a cytogenetic study about chromosomal abnormalities in men with a daughter affected by Turner's syndrome. First it is shown how the calculated sample size for a classical design depends on the parameterization used. Later this sample size is compared with the required sample size in an inverse sampling design and a triangular sequential design using four different parameterizations (absolute differences, log-odds ratio, angular transform and Sprott's transform). The expected savings in sample size, when the alternative hypothesis is true, are 20% of the fixed sample size for the inverse sampling design and 40% for the triangular sequential design

    Directed transport as a mechanism for protein folding in vivo

    Full text link
    We propose a model for protein folding in vivo based on a Brownian-ratchet mechanism in the multidimensional energy landscape space. The device is able to produce directed transport taking advantage of the assumed intrinsic asymmetric properties of the proteins and employing the consumption of energy provided by an external source. Through such a directed transport phenomenon, the polypeptide finds the native state starting from any initial state in the energy landscape with great efficacy and robustness, even in the presence of different type of obstacles. This model solves Levinthal's paradox without requiring biased transition probabilities but at the expense of opening the system to an external field.Comment: 16 pages, 7 figure

    Inverse sampling and triangular sequential designs to compare a small proportion with a reference value

    Get PDF
    Inverse sampling and formal sequential designs may prove useful in reducing the sample size in studies where a small population proportion p is compared with a hypothesized reference proportion p0. These methods are applied to the design of a cytogenetic study about chromosomal abnormalities in men with a daughter affected by Turner's syndrome. First it is shown how the calculated sample size for a classical design depends on the parameterization used. Later this sample size is compared with the required sample size in an inverse sampling design and a triangular sequential design using four different parameterizations (absolute differences, log-odds ratio, angular transform and Sprott's transform). The expected savings in sample size, when the alternative hypothesis is true, are 20% of the fixed sample size for the inverse sampling design and 40% for the triangular sequential design

    Inverse sampling and triangular sequential designs to compare a small proportion with a reference value

    Get PDF
    Inverse sampling and formal sequential designs may prove useful in reducing the sample size in studies where a small population proportion p is compared with a hypothesized reference proportion p0. These methods are applied to the design of a cytogenetic study about chromosomal abnormalities in men with a daughter affected by Turner's syndrome. First it is shown how the calculated sample size for a classical design depends on the parameterization used. Later this sample size is compared with the required sample size in an inverse sampling design and a triangular sequential design using four different parameterizations (absolute differences, log-odds ratio, angular transform and Sprott's transform). The expected savings in sample size, when the alternative hypothesis is true, are 20% of the fixed sample size for the inverse sampling design and 40% for the triangular sequential design
    corecore