184 research outputs found

    Intercomparison between aerosol optical properties by a PREDE skyradiometer and CIMEL sunphotometer over Beijing, China

    No full text
    International audienceThis study compares the aerosol optical and physical properties simultaneously measured by a SKYNET PREDE skyradiometer and AERONET/PHOTONS CIMEL sunphotometer at a location in Beijing, China. Aerosol optical properties (AOP) including the Aerosol Optical Depth (AOD), Angstrom exponent (a), volume size distribution, single scattering albedo (?) and the complex refractive index were compared. The difference between the two types of instruments was less than 1.3% for the AOD and less than 4% for the single scattering albedo below the wavelength of 670 nm. There is a difference between the volume size distribution patterns derived from two instruments, which is probablely due to difference of measurement protocols and inversion algorithms for the respective instruments. AOP under three distinct weather conditions (background, haze, and dust days) over Beijing were compared by using the retrieved skyradiometer and sunphotometer data combined with MODIS satellite results, pyranometer measurements, PM10 measurements, and backtrajectory analysis. The results show that the significant difference of AOP under background, haze, and dust days over Beijing is probablely due to different aerosol components under distinct weather conditions

    Sensitivity of aerosol retrieval to geometrical configuration of ground-based sun/sky radiometer observations

    Get PDF
    A sensitivity study of aerosol retrievals to the geometrical configuration of the ground-based sky radiometer observations is carried out through inversion tests. Specifically, this study is focused on principal plane and almucantar observations, since these geometries are employed in AERONET (AErosol RObotic NETwork). The following effects have been analyzed with simulated data for both geometries: sensitivity of the retrieval to variability of the observed scattering angle range, uncertainties in the assumptions of the aerosol vertical distribution, surface reflectance, possible instrument pointing errors, and the effects of the finite field of view.Financial support was provided by the Spanish CICYT (CGL2009-09740 and CGL2011-23413, CGL2011-13085-E). The research leading to these results was supported by funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 262254 [ACTRIS]. We also thank the Environmental Council of the CyL Regional Government (Consejería de Medio Ambiente, Junta de Castilla y León) for supporting this research

    Global Analysis of Aerosol Properties Above Clouds

    Get PDF
    The seasonal and spatial varability of Aerosol Above Cloud (AAC) properties are derived from passive satellite data for the year 2008. A significant amount of aerosols are transported above liquid water clouds on the global scale. For particles in the fine mode (i.e., radius smaller than 0.3 m), including both clear sky and AAC retrievals increases the global mean aerosol optical thickness by 25(+/- 6%). The two main regions with man-made AAC are the tropical Southeast Atlantic, for biomass burning aerosols, and the North Pacific, mainly for pollutants. Man-made AAC are also detected over the Arctic during the spring. Mineral dust particles are detected above clouds within the so-called dust belt region (5-40 N). AAC may cause a warming effect and bias the retrieval of the cloud properties. This study will then help to better quantify the impacts of aerosols on clouds and climate

    Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission

    Get PDF
    Instruments dedicated to aerosol monitoring are recently available and the POLDER (POLarization and Directionality of the Earth's Reflectances) instrument on board the PARASOL (Polarization & Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) mission is one of them. By measuring the spectral, angular and polarization properties of the radiance at the top of the atmosphere, in coordination with the other A-Train instruments, PARASOL provides the aerosol optical depths (AOD) as well as several optical and microphysical aerosol properties. The instrument, the inversion schemes and the list of aerosol parameters are described. Examples of retrieved aerosol parameters are provided as well as innovative approaches and further inversion techniques

    Ice crystal shapes in cirrus clouds derived from POLDER-1/ADEOS-1.

    Get PDF
    International audienceThis paper discusses the retrieval of ice crystal shapes of cirrus clouds on a global scale using observations collected with POLDER-1 (POLarization and Directionality of the Earth Reflectance) onboard the ADEOS-1 platform. The retrieval is based on polarized bidirectional observations made by POLDER. First, normalized polarized radiances are simulated for cirrus clouds composed of ice crystals that differ in shape and are randomly oriented in space. Different values of cloud optical depths, viewing geometries and solar zenith angles are used in the simulations. This sensitivity study shows that the normalized polarized radiance is highly sensitive to the shape of the scatterers for specific viewing geometries, and that it saturates after a few scattering events, which makes it rapidly independent of the optical depth of the cirrus clouds. Next, normalized polarized radiance observations obtained by POLDER have been selected, based on suitable viewing geometries and on the occurrence of thick cirrus clouds composed of particles randomly oriented in space. For various ice crystal shapes these observations are compared with calculated values pertaining to the same geometry, in order to determine the shape that best reproduces the measurements. The method is tested fully for the POLDER data collected on January 12, 1997. Thereafter, it is applied to six periods of 6 days of observations obtained in January, February, March, April, May, and June 1997. This study shows that the particle shape is highly variable with location and season, and that polycrystals and hexagonal columns are dominant at low latitudes, whereas hexagonal plates occur more frequently at high latitudes

    Multiwavelength fluorescence lidar observations of smoke plumes

    Get PDF
    A five-channel fluorescence lidar was developed for the study of atmospheric aerosol. The fluorescence spectrum induced by 355 nm laser emission is analyzed in five spectral intervals using interference filters. Central wavelengths and the widths of these five interference filters are, respectively, as follows: 438 and 29, 472 and 32, 513 and 29, 560 and 40, and 614 and 54 nm. The relative calibration of these channels has been performed using a tungsten–halogen lamp with a color temperature of 2800 K. This new lidar system was operated during summer–autumn 2022, when strong forest fires occurred in the Moscow region and generated a series of smoke plumes analyzed in this study. Our results demonstrate that, for urban aerosol, the maximal fluorescence backscattering is observed in a 472 nm channel. For the smoke, the maximum is shifted toward longer wavelengths, and the fluorescence backscattering coefficients in 472, 513 and 560 nm channels have comparable values. Thus, from the analysis of the ratios of fluorescence backscattering in available channels, we show that it is possible to identify smoke layers. The particle classification based on single-channel fluorescence capacity (ratio of the fluorescence backscattering to the elastic one) has limitations at high relative humidity (RH). The fluorescence capacity indeed decreases when water uptake of particles enhances the elastic scattering. However, the spectral variation of fluorescence backscattering does not exhibit any dependence on RH and can be therefore applied to aerosol identification.</p

    PHOTONS/AERONET sunphotometer network overview. Description – Activities - Results

    Get PDF
    Fourteenth International Symposium on Atmospheric and Ocean Optics/Atmospheric Physics celebrado del 24 al 30 de junio de 2007 en Buryatia, Russia

    Aerosol characterization at the Saharan AERONET site Tamanrasset

    Get PDF
    More than 2 years of columnar atmospheric aerosol measurements (2006-2009) at the Tamanrasset site (22.79° N, 5.53° E, 1377 m a.s.l.), in the heart of the Sahara, are analysed. Aerosol Robotic Network (AERONET) level 2.0 data were used. The KCICLO (K is the name of a constant and ciclo means cycle in Spanish) method was applied to a part of the level 1.5 data series to improve the quality of the results. The annual variability of aerosol optical depth (AOD) and Ångström exponent (AE) has been found to be strongly linked to the convective boundary layer (CBL) thermodynamic features. The dry-cool season (autumn and winter) is characterized by a shallow CBL and very low mean turbidity (AOD ∼0.09 at 440 nm, AE ∼0.62). The wet-hot season (spring and summer) is dominated by high turbidity of coarse dust particles (AE ∼0.28, AOD ∼0.39 at 440 nm) and a deep CBL. The aerosol-type characterization shows desert mineral dust as the prevailing aerosol. Both pure Saharan dust and very clear sky conditions are observed depending on the season. However, several case studies indicate an anthropogenic fine mode contribution from the industrial areas in Libya and Algeria. The concentration weighted trajectory (CWT) source apportionment method was used to identify potential sources of air masses arriving at Tamanrasset at several heights for each season. Microphysical and optical properties and precipitable water vapour were also investigated

    Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures

    Get PDF
    Aerosol mixtures composed of coarse mode desert dust combined with fine mode combustion generated aerosols (from fossil fuel and biomass burning sources) were investigated at three locations that are in and/or downwind of major global aerosol emission source regions. Multiyear monitoring data at Aerosol Robotic Network sites in Beijing (central eastern China), Kanpur (Indo-Gangetic Plain, northern India), and Ilorin (Nigeria, Sudanian zone of West Africa) were utilized to study the climatological characteristics of aerosol optical properties. Multiyear climatological averages of spectral single scattering albedo (SSA) versus fine mode fraction (FMF) of aerosol optical depth at 675 nm at all three sites exhibited relatively linear trends up to similar to 50% FMF. This suggests the possibility that external linear mixing of both fine and coarse mode components (weighted by FMF) dominates the SSA variation, where the SSA of each component remains relatively constant for this range of FMF only. However, it is likely that a combination of other factors is also involved in determining the dynamics of SSA as a function of FMF, such as fine mode particles adhering to coarse mode dust. The spectral variation of the climatological averaged aerosol absorption optical depth (AAOD) was nearly linear in logarithmic coordinates over the wavelength range of 440-870 nm for both the Kanpur and Ilorin sites. However, at two sites in China (Beijing and Xianghe), a distinct nonlinearity in spectral AAOD in logarithmic space was observed, suggesting the possibility of anomalously strong absorption in coarse mode aerosols increasing the 870 nm AAOD
    • …
    corecore