389 research outputs found
Archetyps of wisdom: intercultural communication competences training in multicultural students groups
This paper presents a new approach to the problem of system decoupling in a power-system state estimation problem. The complexity of power systems is growing, thus challenging the way measurements for state estimation are traditionally managed. Following a previous experience in defining a decentralized solution for state estimation, the authors here propose a decentralized dynamic state estimation method for a large-scale power system in combination with a procedure to automatically identify how and which state information to exchange for reconstructing the states starting from partial knowledge. In particular, the problem of selecting the variables that each observer has to estimate is partially solved within the framework of a stochastic approach, i.e., the so-called collocation method. An optimization algorithm based on dynamic programming is also developed to determine the optimal set of strongly coupled variables necessary for a sufficiently accurate estimation. The developed method is evaluated by applying to an IEEE test bus system
A first insight into the Marsili volcanic seamount (Tyrrhenian Sea, Italy): results from ORION-GEOSTAR3 experiment
The Marsili Seamount is the largest European underwater volcano. It is Plio-Pleistocenic in age, rising up to more than 3000m from the seafloor in the SE Tyrrhenian basin (Central Mediterranean), a back arc basin which began progressively opening 10 Ma ago (Kastens et al., 1988). The seamount lies in a key area for understanding the evolution of the Tyrrhenian region, characterized by high values of heat flow (Della Vedova et al., 2001) and low values of Moho isobaths (Locardi and Nicolich, 1988). In spite of the large dimensions of the Marsili seamount, we still have limited knowledge of its present activity. Ocean exploration is dependent on available technology and infrastructure, which started to develop strongly only after the 1980s. In fact, from its discovery in the 1920s, very little was known of the Marsili Seamount until the late 1990s when new techniques such as multibeam acoustic bathymetry were developed allowed to reveal at least the morphology. Some dedicated expeditions then obtained the first morpho-bathimetric map of the entire Tyrrhenian seafloor, based on multibeam swath-mapping together with seismic, gravimetric and magnetometric data (e.g. Marani and Gamberi, 2004). Although these data have greatly contributed to our understanding, the necessarily short measurement time limits the extent to which they reflect short- to medium-term geophysical processes in the Tyrrhenian basin. New technologies, such as multiparameter seafloor observatories, provide long-term continuous time-series in deep ocean waters, which are the basis for an original approach in ocean exploration. The observation of phenomena variability over time is key to understanding many Earth processes, among which we recall hydrothermal activity, active tectonics, and ecosystem life cycles. The development in Europe of multidisciplinary seafloor observatories has been pioneered under the EC Framework Programmes, specifically in the GEOSTAR projects (Beranzoli et al., 1988, 2000). From 2003 to 2005, long-term geophysical and oceanographic monitoring was conducted within the EC ORION-GEOSTAR3 project with two multiparameter observatories deployed on the seafloor 3320m below sea level (b.s.l.) in the vicinity of the Marsili Seamount. The two observatories were equipped with a set of sensors providing long-term continuous time-series of various physical measurements. The acquired time series are the longest continuous data record of the Marsili Basin available so far. This chaper intends to provide the main information on this experiment and present some results of the processing of the corresponding time-series, adding new valuable information on the still poorly explored activity of the volcano seamount. This chapter is organized as follows: The next section will provide the geological setting to understanding the importance of the Marsili Seamount and its basin; the ORION-GEOSTAR3 experiment is described in Section 24.3; some results from this unprecedented seismic, magnetic and gravimetric data analyses are shown in Section 24.4; and finally, in the last section we present our discussion with the main conclusions.Published623-6413A. Geofisica marina e osservazioni multiparametriche a fondo mar
Association Between Circulating CD4+ T Cell Methylation Signatures of Network-Oriented SOCS3 Gene and Hemodynamics in Patients Suffering Pulmonary Arterial Hypertension
Pathogenic DNA methylation changes may be involved in pulmonary arterial hypertension (PAH) onset and its progression, but there is no data on potential associations with patient-derived hemodynamic parameters. The reduced representation bisulfite sequencing (RRBS) platform identified N= 631 differentially methylated CpG sites which annotated to N= 408 genes (DMGs) in circulating CD4(+) T cells isolated from PAH patients vs. healthy controls (CTRLs). A promoter-restricted network analysis established the PAH subnetwork that included 5 hub DMGs (SOCS3, GNAS, ITGAL, NCOR2, NFIC) and 5 non-hub DMGs (NR4A2, GRM2, PGK1, STMN1, LIMS2). The functional analysis revealed that the SOCS3 gene was the most recurrent among the top ten significant pathways enriching the PAH subnetwork, including the growth hormone receptor and the interleukin-6 signaling. Correlation analysis showed that the promoter methylation levels of each network-oriented DMG were associated individually with hemodynamic parameters. In particular, SOCS3 hypomethylation was negatively associated with right atrial pressure (RAP) and positively associated with cardiac index (CI) (vertical bar r vertical bar >= 0.6). A significant upregulation of the SOCS3, ITGAL, NFIC, NCOR2, and PGK1 mRNA levels (qRT-PCR) in peripheral blood mononuclear cells from PAH patients vs. CTRLs was found (P <= 0.05). By immunoblotting, a significant upregulation of the SOCS3 protein was confirmed in PAH patients vs. CTRLs (P < 0.01). This is the first network-oriented study which integrates circulating CD4(+) T cell DNA methylation signatures, hemodynamic parameters, and validation experiments in PAH patients at first diagnosis or early follow-up. Our data suggests that SOCS3 gene might be involved in PAH pathogenesis and serve as potential prognostic biomarker
Targeted memory reactivation of newly learned words during sleep triggers REM-mediated integration of new memories and existing knowledge
Recent memories are spontaneously reactivated during sleep, leading to their gradual strengthening. Whether reactivation also mediates the integration of new memories with existing knowledge is unknown. We used targeted memory reactivation (TMR) during slow-wave sleep (SWS) to selectively cue reactivation of newly learned spoken words. While integration of new words into their phonological neighbourhood was observed in both cued and uncued words after sleep, TMR-triggered integration was predicted by the time spent in rapid eye movement (REM) sleep. These data support complementary roles for SWS and REM in memory consolidation
Clinical epigenetics settings for cancer and cardiovascular diseases: real-life applications of network medicine at the bedside
Despite impressive efforts invested in epigenetic research in the last 50 years, clinical applications are still lacking. Only a few university hospital centers currently use epigenetic biomarkers at the bedside. Moreover, the overall concept of precision medicine is not widely recognized in routine medical practice and the reductionist approach remains predominant in treating patients affected by major diseases such as cancer and cardiovascular diseases. By its' very nature, epigenetics is integrative of genetic networks. The study of epigenetic biomarkers has led to the identification of numerous drugs with an increasingly significant role in clinical therapy especially of cancer patients. Here, we provide an overview of clinical epigenetics within the context of network analysis. We illustrate achievements to date and discuss how we can move from traditional medicine into the era of network medicine (NM), where pathway-informed molecular diagnostics will allow treatment selection following the paradigm of precision medicine
SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins and human RNAs. NSP16 binds to the mRNA recognition domains of the U1 and U2 splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and leads to global inhibition of mRNA translation upon infection. Finally, NSP8 and NSP9 bind to the 7SL RNA in the signal recognition particle and interfere with protein trafficking to the cell membrane upon infection. Disruption of each of these essential cellular functions acts to suppress the interferon response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 to antagonize essential cellular processes to suppress host defenses
SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins and human RNAs. NSP16 binds to the mRNA recognition domains of the U1 and U2 splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and leads to global inhibition of mRNA translation upon infection. Finally, NSP8 and NSP9 bind to the 7SL RNA in the signal recognition particle and interfere with protein trafficking to the cell membrane upon infection. Disruption of each of these essential cellular functions acts to suppress the interferon response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 to antagonize essential cellular processes to suppress host defenses
Complementary roles of slow-wave sleep and rapid eye movement sleep in emotional memory consolidation
Although rapid eye movement sleep (REM) is regularly implicated in emotional memory consolidation, the role of slow-wave sleep (SWS) in this process is largely uncharacterized. In the present study, we investigated the relative impacts of nocturnal SWS and REM upon the consolidation of emotional memories using functional magnetic resonance imaging (fMRI) and polysomnography (PSG). Participants encoded emotionally positive, negative, and neutral images (remote memories) before a night of PSG-monitored sleep. Twenty-four hours later, they encoded a second set of images (recent memories) immediately before a recognition test in an MRI scanner. SWS predicted superior memory for remote negative images and a reduction in right hippocampal responses during the recollection of these items. REM, however, predicted an overnight increase in hippocampal–neocortical connectivity associated with negative remote memory. These findings provide physiological support for sequential views of sleep-dependent memory processing, demonstrating that SWS and REM serve distinct but complementary functions in consolidation. Furthermore, these findings extend those ideas to emotional memory by showing that, once selectively reorganized away from the hippocampus during SWS, emotionally aversive representations undergo a comparably targeted process during subsequent REM
Atrial fibrillation after pulmonary lobectomy for lung cancer affects long-term survival in a prospective single-center study
<p>Abstract</p> <p>Background</p> <p>Atrial fibrillation (AF) after thoracic surgery is a continuing source of morbidity and mortality. The effect of postoperative AF on long-term survival however has not been studied. Our aim was to evaluate the impact of AF on early outcome and on survival > 5 years after pulmonary lobectomy for lung cancer.</p> <p>Methods</p> <p>From 1996 to June 2009, 454 consecutive patients undergoing lobectomy for lung cancer were enrolled and followed-up until death or study end (October 2010). Patients with postoperative AF were identified; AF was investigated with reference to its predictors and to short- and long-term survival (> 5 years).</p> <p>Results</p> <p>Hospital mortality accounted for 7 patients (1.5%), while postoperative AF occurred in 45 (9.9%). Independent AF predictors were: preoperative paroxysmal AF (odds ratio [OR] 5.91; 95%CI 2.07 to 16.88), postoperative blood transfusion (OR 3.61; 95%CI 1.67 to 7.82) and postoperative fibro-bronchoscopy (OR 3.39; 95%CI 1.48 to 7.79). Patients with AF experienced higher hospital mortality (6.7% vs. 1.0%, p = 0.024), longer hospitalization (15.3 ± 10.1 vs. 12.2 ± 5.2 days, p = 0.001) and higher intensive care unit admission rate (13.3% vs. 3.9%, p = 0.015). The median follow-up was 36 months (maximum: 179 months). Among the 445 discharged subjects with complete follow-up, postoperative AF was not an independent predictor of mortality; however, among the 151 5-year survivors, postoperative AF independently predicted poorer long-term survival (HR 3.75; 95%CI 1.44 to 9.08).</p> <p>Conclusion</p> <p>AF after pulmonary lobectomy for lung cancer, in addition to causing higher hospital morbidity and mortality, predicts poorer long-term outcome in 5-year survivors.</p
- …