2,064 research outputs found

    On the algorithmic complexity of twelve covering and independence parameters of graphs

    Get PDF
    The definitions of four previously studied parameters related to total coverings and total matchings of graphs can be restricted, thereby obtaining eight parameters related to covering and independence, each of which has been studied previously in some form. Here we survey briefly results concerning total coverings and total matchings of graphs, and consider the aforementioned 12 covering and independence parameters with regard to algorithmic complexity. We survey briefly known results for several graph classes, and obtain new NP-completeness results for the minimum total cover and maximum minimal total cover problems in planar graphs, the minimum maximal total matching problem in bipartite and chordal graphs, and the minimum independent dominating set problem in planar cubic graphs

    Physical activity is reduced prior to ventricular arrhythmiasin patients with a wearable cardioverter defibrillator

    Get PDF
    The utility of accelerometer�based activity data to identify patients at risk of sustained ventricular tachycardia (VT) or ventricular fibrillation (VF) has not previously been investigated. The aim of the current study was to determine whether physical activity is associated with manifesting spontaneous sustained VT/VF requiring emergent defibrillation in patients with an ejection fraction of ≤35%

    Health system strengthening: a qualitative evaluation of implementation experience and lessons learned across five African countries.

    Get PDF
    BACKGROUND: Achieving the United Nations Sustainable Development Goals in sub-Saharan Africa will require substantial improvements in the coverage and performance of primary health care delivery systems. Projects supported by the Doris Duke Charitable Foundation's (DDCF) African Health Initiative (AHI) created public-private-academic and community partnerships in five African countries to implement and evaluate district-level health system strengthening interventions. In this study, we captured common implementation experiences and lessons learned to understand core elements of successful health systems interventions. METHODS: We used qualitative data from key informant interviews and annual progress reports from the five Population Health Implementation and Training (PHIT) partnership projects funded through AHI in Ghana, Mozambique, Rwanda, Tanzania, and Zambia. RESULTS: Four major overarching lessons were highlighted. First, variety and inclusiveness of concerned key players (public, academic and private) are necessary to address complex health system issues at all levels. Second, a learning culture that promotes evidence creation and ability to efficiently adapt were key in order to meet changing contextual needs. Third, inclusion of strong implementation science tools and strategies allowed informed and measured learning processes and efficient dissemination of best practices. Fourth, five to seven years was the minimum time frame necessary to effectively implement complex health system strengthening interventions and generate the evidence base needed to advocate for sustainable change for the PHIT partnership projects. CONCLUSION: The AHI experience has raised remaining, if not overlooked, challenges and potential solutions to address complex health systems strengthening intervention designs and implementation issues, while aiming to measurably accomplish sustainable positive change in dynamic, learning, and varied contexts

    The imprints of superstatistics in multiparticle production processes

    Full text link
    We provide an update of the overview of imprints of Tsallis nonextensive statistics seen in a multiparticle production processes. They reveal an ubiquitous presence of power law distributions of different variables characterized by the nonextensivity parameter q > 1. In nuclear collisions one additionally observes a q-dependence of the multiplicity fluctuations reflecting the finiteness of the hadronizing source. We present sum rules connecting parameters q obtained from an analysis of different observables, which allows us to combine different kinds of fluctuations seen in the data and analyze an ensemble in which the energy (E), temperature (T) and multiplicity (N) can all fluctuate. This results in a generalization of the so called Lindhard's thermodynamic uncertainty relation. Finally, based on the example of nucleus-nucleus collisions (treated as a quasi-superposition of nucleon-nucleon collisions) we demonstrate that, for the standard Tsallis entropy with degree of nonextensivity q < 1, the corresponding standard Tsallis distribution is described by q' = 2 - q > 1.Comment: 12 pages, 3 figures. Based on invited talk given by Z.Wlodarczyk at SigmaPhi2011 conference, Larnaka, Cyprus, 11-15 July 2011. To be published in Cent. Eur. J. Phys. (2011

    Estimating the inelasticity with the information theory approach

    Get PDF
    Using the information theory approach, in both its extensive and nonextensive versions, we estimate the inelasticity parameter KK of hadronic reactions together with its distribution and energy dependence from ppˉp\bar{p} and pppp data. We find that the inelasticity remains essentially constant in energy except for a variation around K0.5K\sim 0.5, as was originally expected.Comment: 14 pages, 8 figures. Misprints correcte

    A Systematic Approach to Configuring MetaMap for Optimal Performance

    Get PDF
    Background  MetaMap is a valuable tool for processing biomedical texts to identify concepts. Although MetaMap is highly configurative, configuration decisions are not straightforward. Objective  To develop a systematic, data-driven methodology for configuring MetaMap for optimal performance. Methods  MetaMap, the word2vec model, and the phrase model were used to build a pipeline. For unsupervised training, the phrase and word2vec models used abstracts related to clinical decision support as input. During testing, MetaMap was configured with the default option, one behavior option, and two behavior options. For each configuration, cosine and soft cosine similarity scores between identified entities and gold-standard terms were computed for 40 annotated abstracts (422 sentences). The similarity scores were used to calculate and compare the overall percentages of exact matches, similar matches, and missing gold-standard terms among the abstracts for each configuration. The results were manually spot-checked. The precision, recall, and F-measure ( β =1) were calculated. Results  The percentages of exact matches and missing gold-standard terms were 0.6–0.79 and 0.09–0.3 for one behavior option, and 0.56–0.8 and 0.09–0.3 for two behavior options, respectively. The percentages of exact matches and missing terms for soft cosine similarity scores exceeded those for cosine similarity scores. The average precision, recall, and F-measure were 0.59, 0.82, and 0.68 for exact matches, and 1.00, 0.53, and 0.69 for missing terms, respectively. Conclusion  We demonstrated a systematic approach that provides objective and accurate evidence guiding MetaMap configurations for optimizing performance. Combining objective evidence and the current practice of using principles, experience, and intuitions outperforms a single strategy in MetaMap configurations. Our methodology, reference codes, measurements, results, and workflow are valuable references for optimizing and configuring MetaMap

    Enhancing mHealth Technology in the Patient-Centered Medical Home Environment to Activate Patients With Type 2 Diabetes: A Multisite Feasibility Study Protocol.

    Get PDF
    BackgroundThe potential of mHealth technologies in the care of patients with diabetes and other chronic conditions has captured the attention of clinicians and researchers. Efforts to date have incorporated a variety of tools and techniques, including Web-based portals, short message service (SMS) text messaging, remote collection of biometric data, electronic coaching, electronic-based health education, secure email communication between visits, and electronic collection of lifestyle and quality-of-life surveys. Each of these tools, used alone or in combination, have demonstrated varying degrees of effectiveness. Some of the more promising results have been demonstrated using regular collection of biometric devices, SMS text messaging, secure email communication with clinical teams, and regular reporting of quality-of-life variables. In this study, we seek to incorporate several of the most promising mHealth capabilities in a patient-centered medical home (PCMH) workflow.ObjectiveWe aim to address underlying technology needs and gaps related to the use of mHealth technology and the activation of patients living with type 2 diabetes. Stated differently, we enable supporting technologies while seeking to influence patient activation and self-care activities.MethodsThis is a multisite phased study, conducted within the US Military Health System, that includes a user-centered design phase and a PCMH-based feasibility trial. In phase 1, we will assess both patient and provider preferences regarding the enhancement of the enabling technology capabilities for type 2 diabetes chronic care management. Phase 2 research will be a single-blinded 12-month feasibility study that incorporates randomization principles. Phase 2 research will seek to improve patient activation and self-care activities through the use of the Mobile Health Care Environment with tailored behavioral messaging. The primary outcome measure is the Patient Activation Measure scores. Secondary outcome measures are Summary of Diabetes Self-care Activities Measure scores, clinical measures, comorbid conditions, health services resource consumption, and technology system usage statistics.ResultsWe have completed phase 1 data collection. Formal analysis of phase 1 data has not been completed. We have obtained institutional review board approval and began phase 1 research in late fall 2016.ConclusionsThe study hypotheses suggest that patients can, and will, improve their activation in chronic care management. Improved activation should translate into improved diabetes self-care. Expected benefits of this research to the scientific community and health care services include improved understanding of how to leverage mHealth technology to activate patients living with type 2 diabetes in self-management behaviors. The research will shed light on implementation strategies in integrating mHealth into the clinical workflow of the PCMH setting.Trial registrationClinicalTrials.gov NCT02949037. https://clinicaltrials.gov/ct2/show/NCT02949037. (Archived by WebCite at http://www.webcitation.org/6oRyDzqei)

    Measurement of the hadronic photon structure function F_{2}^{γ} at LEP2

    Get PDF
    The hadronic structure function of the photon F_{2}^{γ} (x, Q²) is measured as a function of Bjorken x and of the photon virtuality Q² using deep-inelastic scattering data taken by the OPAL detector at LEP at e⁺e⁻ centre-of-mass energies from 183 to 209 GeV. Previous OPAL measurements of the x dependence of F_{2}^{γ} are extended to an average Q² of 〈Q²〉=780 GeV² using data in the kinematic range 0.15<x<0.98. The Q² evolution of F_{2}^{γ} is studied for 12.1<〈Q²〉<780 GeV² using three ranges of x. As predicted by QCD, the data show positive scaling violations in F_{2}^{γ} with F_{2}^{γ} (Q²)/α = (0.08±0.02⁺⁰·⁰⁵_₀.₀₃) + (0.13±0.01⁺⁰·⁰¹_₀.₀₁) lnQ², where Q² is in GeV², for the central x region 0.10–0.60. Several parameterisations of F_{2}^{γ} are in qualitative agreement with the measurements whereas the quark-parton model prediction fails to describe the data

    Measurement of the charm structure function F_{2,c)^{γ} of the photon at LEP

    Get PDF
    The production of charm quarks is studied in deep-inelastic electron–photon scattering using data recorded by the OPAL detector at LEP at nominal e⁺e⁻ centre-of-mass energies from 183 to 209 GeV. The charm quarks have been identified by full reconstruction of charged D* mesons using their decays into D⁰π with the D⁰ observed in two decay modes with charged particle final states, Kπ and Kπππ. The cross-section σ^{D*} for production of charged D* in the reaction e⁺e⁻→e⁺e⁻D*Χ is measured in a restricted kinematical region using two bins in Bjorken x, 0.00140.1 the perturbative QCD calculation at next-to-leading order agrees perfectly with the measured cross-section. For x<0.1 the measured cross-section is 43.8±14.3±6.3±2.8 pb with a next-to-leading order prediction of 17.0⁺²·⁹_₂.₃ pb
    corecore