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ABSTRACT	
Interoperable	clinical	decision	support	system	(CDSS)	rules	are	a	pathway	to	achieving	
interoperability	which	is	a	well-recognized	challenge	in	health	information	technology.	
Building	an	ontology	facilitates	the	creation	of	interoperable	CDSS	rules,	which	can	be	
achieved	by	identifying	the	keyphrases	(KP)	from	the	existing	literature.	However,	KP	
identification	for	labeling	the	data	requires	human	expertise,	consensus,	and	contextual	
understanding.	This	paper	aims	to	present	a	semi-supervised	framework	for	the	CDSS	
using	minimal	 labeled	data	based	on	hierarchical	attention	over	the	documents	fused	
with	domain	adaptation	approaches.	Then,	evaluate	the	effectiveness	of	KP	identification	
with	this	framework.	In	the	view	of	semi-supervised	learning,	our	methodology	toward	
building	 this	 framework	outperforms	 the	prior	neural	 architectures	by	 learning	with	
document-level	context,	no	explicit	hand-crafted	features,	knowledge	transfer	from	pre-
trained	models	(on	unlabeled	corpus),	and	post-fine-tuning	with	smaller	gold	standard-
labeled	data.	To	the	best	of	our	knowledge,	this	is	the	first	functional	framework	for	the	
CDSS	 sub-domain	 to	 identify	 the	 KP,	 which	 is	 trained	 on	 limited	 labeled	 data.	 It	
contributes	to	the	general	natural	language	processing	(NLP)	architectures	in	areas	such	
as	clinical	NLP,	where	manual	data	labeling	is	challenging.	

KEYWORDS	
Clinical	 Decision	 Support	 System,	 Minimal	 labeled	 data,	 Hierarchical	 context,	 Semi-
supervised	learning,	Transfer	Learning,	Domain	adaptation	
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NLP:	Natural	language	processing	
CDSS:	Clinical	decision	support	system	
HDE:	Human	domain	expert	
BiLSTM:	Bidirectional	long	short-term	memory	
BiLM:	Bidirectional	language	model	
CRF:	Conditional	random	field	
GS:	Gold	standard	
KP:	Keyphrase	

	
Code	is	available	in	GitHub:	https://github.com/xjing16/cdss4pcp_nlpml_pipeline	
Correspondence	Author:	Xia	Jing,	Email:	xjing@clemson.edu	

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 26, 2023. ; https://doi.org/10.1101/2023.01.26.23285060doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.01.26.23285060
http://creativecommons.org/licenses/by-nc-nd/4.0/


2	

1. Introduction	
Interoperability	 is	a	well-recognized	barrier	 in	health	 informatics.	 It	creates	chaos	

when	transmitting	patients’	health	records.	Developing	and	maintaining	such	clinical	
decision	support	system	(CDSS)	rules	across	multiple	healthcare	settings	is	challenging.	
Having	interoperable	CDSS	rules	is	one	part	of	achieving	interoperability	in	healthcare.	
An	 ontology	 using	 unambiguous	 concepts	 and	 their	 relationships	 can	 facilitate	 this	
process.	
In	 a	 text	 article,	 these	 concepts	 are	 the	 orderly	 sequence	 of	 words	 or	 N-grams,	

namely,	keyphrases	(KP).	These	KP	contribute	not	only	to	their	meanings	but	also	to	the	
contextual	understanding	of	the	text.	A	KP	is	named	a	gold	standard	(GS)	if	it	is	selected	
by	a	human	domain	expert	(HDE)	after	careful	review	and	consensus	among	multiple	
HDEs.	
An	 ontology	 can	 be	 constructed	 using	 such	 GS	 terms	 and	 their	 relationships,	

providing	 foundations	 for	 interoperable	 and	 generic	 CDSS	 rules	 [1].	 However,	 an	
ontology	construction	is	usually	a	manual	process	with	the	experts’	input	and	curators’	
deep	understanding	of	the	domain	and	application	contexts	where	KP	identification	is	
one	 of	 the	 steps.	 Automatic	 KP	 identification	 can	 be	 a	 critical	 complement	 to	 the	
aforementioned	manual	curation	and	construction	of	an	ontology	process.	
We	 aim	 to	 build	 a	 system	using	 natural	 language	processing	 (NLP),	which	 assists	

humans	in	identifying	these	KP	faster.	When	the	system	design	involves	reviewing	a	text	
corpus	and	finding	the	data	patterns	to	determine	the	N-grams,	it	can	be	driven	by	NLP	
neural	network	architectures	[2],	which	can	automate	the	identification	of	possible	GS	
terms	to	match	human	intellect	closely.	
Given	 any	 text,	 some	 of	 the	 classic	 NLP	 algorithms	 (supervised	 and	 rule-based	

approaches)	[3],	require	expensive	labeled	data	to	recognize	the	GS	terms	aligning	with	
the	 HDE	 interests	 in	 CDSS	 concepts.	 Avoiding	 the	 need	 for	 labels,	 unsupervised	
algorithms	 [3]	 work	with	 text	 similarity	 or	 semantic	 relatedness.	With	 the	 growing	
corpus	 and	 increased	 contextual	 complexity	 towards	 text	 understanding,	 the	 prior	
approaches	 do	 not	 align	with	 our	 interest	 in	 identifying	 the	 terms	 using	 contextual	
awareness.	
Although	Transformer	models	[4,	5]	have	been	quite	popular	in	accomplishing	such	

a	task	using	the	context	information	with	attention,	they	are	computationally	intense	
and	require	labeled	data	to	fine-tune	or	perform	a	domain	adaptation	from	biomedical	
to	 the	 CDSS	 domain.	 Leaving	 the	 computational	 complexity	 aside,	 the	 availability	 of	
high-quality	human-labeled	data	is	a	problem.	Only	1.2%	of	the	data	is	labeled	out	of	the	
total	 corpus	 from	 the	CDSS	 literature.	 In	 the	 upcoming	 sections,	we	will	 discuss	 the	
effective	usage	of	minimal	 labeled	data	 to	solve	 the	challenges	of	domain	adaptation	
which	usually	requires	high-quality	labels.	
To	avoid	the	above	mentioned	challenges,	inferior	neural	architectures	(compared	to	

the	Transformer	[4,5]	and	other	[6,7]	models),	such	as	long	short-term	memory	(LSTM)-
based	 encoders	 [8]	 along	 with	 the	 conditional	 random	 fields	 (CRF)-based	 decoder	
models	[9]	(a	statistical	modeling	method	for	text	pattern	recognition,	where	current	
prediction	is	affected	by	neighbors),	help	identify	the	possible	N-gram	combination	of	
tokens	into	a	valid	GS	candidate	term.	It	comes	with	the	customization	of	numerous	text	
features	and	attention	levels	over	the	text	while	recognizing	the	GS	terms	from	the	CDSS	
literature.	
Focusing	more	 on	 contextual	 understanding	 and	 bidirectional	 attention	 for	 LSTM	

enhances	the	prediction	of	KP	[10].	However,	adding	document-level	context	during	KP	
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identification	leverages	the	broader	contextual	understanding	of	the	text.	Our	approach	
is	based	on	the	NLP	architectures	presented	by	Zichao	and	Guohai	et	al.	[11,12].	We	used	
these	NLP	architectures	as	a	base	to	create	a	hybrid	approach	by	augmenting	additional	
context	layers	for	the	existing	attention-based	BiLSTM-CRF	[11,12]	neural	architecture	
to	preserve	its	light-weighted	heritage	and	append	the	benefits	of	context	awareness.	
With	this	approach,	we	will	see	the	details	of	harnessing	the	power	of	a	minimal	labeled	
dataset	toward	aligning	the	predictions	with	human	interests.	Furthermore,	the	main	
contributions	of	this	paper	are	as	follows:	

• A	 hierarchical	 attention-based	 encoder	 (Hier-Attn-BiLSTM)	 neural	 network	
architecture,	which	incorporates	the	document-level	 information	(with	word-
level	and	sentence-level	contexts)	in	understanding	the	long-range	contextual	
dependencies	to	identify	KP.	

• Creating	high-quality	synthetic	labels	to	train	the	hierarchical	attention-based	
model	 through	 the	domain	adaptation	of	 a	pre-trained	Bidirectional	Encoder	
Representations	from	Transformers	(BERT)	model.		

• Understanding	 and	 harnessing	 the	 synthetic	 fine-tuning	 process	 when	 the	
machine	 learning	(ML)	model	 is	 limited	by	 labeled	data	 in	a	semi-supervised	
approach.	

• Optimizing	the	process	of	using	minimal	human	labels	in	KP	identification	based	
on	experiments.	

The	 remainder	 of	 this	 paper	 is	 structured	 as	 follows.	 We	 will	 discuss	 the	 related	
research	in	Section	2,	formulate	the	task,	describe	the	methodology	and	architecture	in	
Section	 3,	 outline	 the	 CDSS	 dataset,	 see	 the	 training	 procedure,	 illustrate	 the	
experiments	 and	 results	 in	 Section	 4,	 depict	 the	 analysis	 and	discuss	 the	 challenges	
identified	during	the	implementation	of	this	project	in	Section	5,	and	finally	conclude	in	
Section	6.	
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2. Background	
2.1. CDSS Ontology 
CDSS	 has	 been	 recognized	 and	 adopted	 broadly	 in	 healthcare	 settings	 due	 to	 its	
effectiveness	 in	 improving	 healthcare	 quality,	 adherence	 rates	 in	 medication	
prescription,	and	other	clinical	orders	[13,14].	CDSS	is	usually	a	part	of	an	electronic	
health	record	system.	The	CDSS	rules	are	created	by	incorporating	the	clinical	domain	
knowledge	and	contextual	information,	which	affect	the	operational	behavior	of	such	
decision	systems’	workflow.	However,	creating	and	maintaining	these	rules	are	tedious	
and	challenging	under	resource-constrained	conditions.	
Creating	 an	 ontology	 facilitates	 the	 interoperability	 of	 CDSS	 rules	 and	 solves	 the	
challenges	 [1].	 Traditionally,	 ontology	 construction	 is	 heavily	 expert-driven	manual	
process.	 However,	 new	 terms	 and	 phrases	 emerge	 as	 the	 field	 and	 science	 evolve.	
Identifying	such	terms	promptly	can	be	a	critical	complementary	component	in	building	
ontology,	more	comprehensively	than	merely	manual	curation.	This	work	contributes	
to	the	basic	workflow	of	ontology	construction	by	automatically	identifying	KP	within	
the	process.	
2.2. Similarity with Other NLP Problems 
The	 NLP-based	ML	 approaches	 deal	 with	 unstructured	 text	 data	 sources	 to	 extract	
structured	information,	understand	the	patterns,	and	identify	the	KP.	Identifying	a	KP	
includes	 two	 phases:	 (1)	 extracting	N-grams,	 limiting	 to	 noun	 phrases	 only,	 and	 (2)	
scoring	or	ranking	the	N-grams	to	find	the	best	among	selected	ones	to	mark	them	as	
KP.	Some	of	the	popular	methodologies	for	KP	extraction,	as	given	by	Zhiyong	He	et	al.	
[2],	are	summarized	in	the	forthcoming	sections,	and	we	will	discuss	how	the	problem	
we	focus	on	is	different	from	theirs.	
2.2.1. Statistical	and	Unsupervised	Methods	
In	the	case	of	limited	labeled	data,	ML	methods	involving	no	training	data	—	statistical	
or	unsupervised,	would	be	an	ideal	use	case	for	us	as	proposed	by	Kazi	et	al.	[3].	Some	
statistical	 features,	 such	 as	 TF-IDF	 [15,	 16]	 and	 BM25	 [17],	 describe	 the	 idea	 of	
differentiating	the	candidate	terms	into	good	or	bad	words.	But	they	fail	to	deal	with	the	
unseen	data	distribution	as	the	statistics	are	the	conclusions	drawn	from	the	existing	
corpus.	
In	unsupervised	methods,	the	KP	are	determined	using	semantic	similarity,	assuming	

that	 the	more	essential	candidates	cover	all	 the	 important	 topics	of	 the	document.	A	
graph	is	created	using	KP	as	nodes	and	their	semantic	similarity	as	the	relations.	Such	a	
graph	can	be	used	by	graph-based	ranking	algorithms	such	as	Google’s	PageRank	[18],	
MultiPartiteRank	[19],	PositionRank	[20]	and	TopicRank	[21]	algorithms	to	retrieve	the	
KP	by	scoring	the	terms	across	the	relations	drawn.	However,	the	relation	is	given	by	
the	similarity	measure	between	N-gram	tokens,	and	it	does	not	consider	the	document’s	
contextual	understanding	to	truly	identify	a	KP.	
2.2.2. Supervised	Methods	
Considering	the	KP	identification	as	a	classification	task,	we	need	training	data	to	help	

the	 ML	 model	 align	 the	 predictions	 to	 the	 human	 interest.	 It	 can	 be	 coupled	 with	
carefully	 designed	hand-crafted	 features	 to	 hold	up	 to	 the	 expectations	 of	 improved	
term	identification,	 to	classify	a	term	as	either	KP	or	non-KP,	recasting	 it	as	a	binary	
classifier.	Furthermore,	the	popular	choices	among	supervised	algorithms	are	Decision	
Trees	[23],	Naïve	Bayes	[22],	and	Support	Vector	Machines	(SVM)	[24],	which	can	be	
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used	to	solve	binary	classification.	As	the	KP	are	not	independent	entities	and	are	always	
an	N-gram	combination,	they	create	chaos	in	the	conceptual	formulation	of	the	problem.	
Reformulating	 it	 as	 a	 ranking	 problem	 and	marking	 top	N	 entities	 as	 the	 KP,	 the	

research	by	Witten	Ian	et	al.	[25],	a	popular	approach,	KEA	uses	statistical	features	like	
TF-IDF	and	Word’s	First	Occurrence	Position	(WFOP),	whereas	the	work	by	Chengzhi	
Zhang	et	al.	 [26]	exploded	 into	 the	usage	of	 features	such	as	TF-IDF	and	WFOP	with	
length	 of	 token	 and	 linguistic	 features	 such	 as	 Part	 of	 Speech	 (POS)	 [27]	 tags	 to	
normalize	the	position	and	occurrence	of	the	KP.	A	linear	ranking	SVM	was	used	to	rank	
the	KP	[28].	The	BiLSTM-CRF	model	[29]	considers	it	a	sequence	tagging	problem	and	
extracts	 the	KP	with	 superior	 performance	 [30].	However,	 direct	 implementation	 of	
supervised	methods	does	not	solve	our	problem,	as	labeled	data	limits	us,	and	we	will	
further	discuss	this	in	the	upcoming	sections.	
	

2.2.3. Named	Entity	Recognition	(NER)	
Any	sub-task	of	information	extraction	and	retrieval	classifying	the	N-gram	entities	into	
pre-defined	categories,	such	as	drug,	gene,	disease,	ORG,	person,	location,	and	data,	is	
known	as	NER	[31].	It	can	be	broken	down	into	two	problems,	entity	identification	and	
entity	classification,	similar	to	KP	extraction.	The	first	 identification	phase	 is	N-gram	
segmentation,	where	N-gram	can	be	the	sequence	of	tokens.	The	second	classification	
phase	is	similar	to	organizing	the	respective	terms	into	categories.	Here,	all	the	entities	
can	be	distinct	and	exist	independently.	
While	the	problem	statement	looks	similar,	our	task	of	identifying	the	top	KP	for	the	
document	has	no	pre-defined	categories	like	NER.	Although	it	is	based	on	a	contextual	
understanding	of	the	text	and	often	comprehended	by	confidence	toward	classifying	an	
entity	into	one	of	the	pre-defined	categories,	the	entities	do	not	reveal	their	significance	
in	document	understanding.	Additionally,	in	the	KP,	we	need	to	include	not	only	nouns	
but	also	verbs.	Therefore,	our	 task	 is	not	 the	same	as	 traditional	NER	but	 is	close	 to	
entity	recognition.	
2.3. Domain Adaptation 
Entity	 recognition	or	KP	 identification	 can	be	a	 fundamental	 task	 for	various	NLP	

applications,	such	as	entity	identification,	building	an	ontology,	and	knowledge	graph	
construction	over	entities.	Using	a	large	amount	of	labeled	data	to	train	the	ML	model	
from	scratch	 is	 challenging.	To	 avoid	 this	problem,	domain	 adaptation	 [32,33]	helps	
fine-tune	the	pre-trained	ML	models	in	the	parent	or	similar	domain	to	the	sub-domain	
citing	the	minimal	usage	of	labeled	data	as	a	standard	practice.	
A	popular	model	in	entity	identification,	Spacy	[34],	based	on	BERT	[5],	is	trained	on	

OntoNotes5	[35]	and	WordNet	[36]	corpora.	Although	it	works	very	well	with	language	
modeling	and	text	understanding	for	English	corpora,	it	fails	to	identify	the	entities	in	
sub-domains	(e.g.,	biomedical,	and	clinical	informatics).	The	large	language	model	(LM)	
is	 domain-adapted	 with	 785	 K	 vocabulary	 and	 600-word	 vectors	 into	 sciSpacy,	
specializing	in	identification	of	biomedical	entities	[38].	We	use	this	sciSpacy	model	to	
further	 fine-tune	 it	 to	 the	 CDSS	 sub-domain	 and	 strengthen	 the	 transfer	 learning	
approaches	in	our	methodology.	
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2.4. Language Model (LM) 
The	LM	 is	one	of	 the	 critical	 aspects	of	present-day	NLP	architectures	 [39]	which	 is	
based	on	 the	hidden	Markov	 chain	models	 (HMM)	 [40]	 and	used	where	 the	 labeled	
training	data	is	limited.	It	is	a	statistical	and	probabilistic	technique	to	determine	the	
conditional	probability	of	each	word’s	occurrence	in	a	given	sentence.	To	create	such	
an	LM,	all	the	sentences	in	the	document	are	unified	into	one	by	removing	punctuation.	
Then,	we	slide	over	the	word	windows	to	train	an	LM	without	needing	labeled	data	to	
understand	 the	 context	 of	 the	 words	 and	 their	 characteristics.	 Here,	 we	 need	 to	
understand	domain-specific	language	and	the	distribution	of	words,	a	CDSS	domain	in	
our	case.	We	can	use	this	trained	LM	to	transfer	its	neural	network	parameters	to	the	
actual	model,	helping	it	learn	the	language	distribution	for	the	CDSS	domain	[41].	
	
3. Methodology	
Our task is similar to sequence labeling, and with the growing popularity of neural networks, 
hand-crafted text features (TF-IDF, Length of token, POS tags, WFOF etc.,) are no longer 
needed.	A	bidirectional	 long	short-term	memory	(BiLSTM)	over	a	sequence	of	words	
with	textual	features	as	the	encoder	and	a	CRF	layer	as	the	decoder	can	learn	the	N-
gram	 entity	 patterns	 and	 their	 occurrence	 with	 context	 over	 the	 current	 sentence	
[11,12].	
Of	all	the	textual	features,	word	embeddings	(WE)	play	a	significant	role	in	transforming	
text	information	into	mathematical	representation	to	feed	input	data	into	deep	learning	
models.	We	 propose	 a	 hierarchical	 attention-driven	 context	 added	 to	 each	word	 to	
improve	 the	 inference	 and	 learn	 a	 variety	 of	 text	 patterns	 with	minimum	 labels	 to	
bridge	 the	 gap	 of	 contextual	 understanding	 for	word	 representations.	 Details	 of	 the	
newly	proposed	methodology	are	presented	in	the	following	sections.	
3.1. Overview 

3.1.1. Defining	the	Task	

KP	identification	is	a	typical	sequence	labeling	task	where	we	find	the	N-gram	KP	from	
the	 document.	 Usually,	 a	 document	 with	 m	 sentences,	𝑑 = (𝑠!, 𝑠", … , 𝑠#) 	and	 each	
sentence	containing	n	tokens	or	words,	𝑠$ = (𝑤$!, 𝑤$", … , 𝑤$%)	is	the	input	to	the	model	
and	output	𝑧$ = (𝑧$!, 𝑧$", … , 𝑧$%)	would	be	a	sequence	of	tags	in	BIO	token	tagging	[42]	
representation.	

	

Figure	1.	Flow	of	labeling	Keyphrases	(KP)	from	a	sentence	
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In	BIO	token	tagging	[42],	the	first	word	is	labeled	B-KP,	the	remaining	words	in	an	
N-gram	phrase	are	labeled	I-KP,	and	the	rest	of	the	non-KP	tokens	are	marked	as	O.	For	
example,	 as	 shown	 in	 Fig.	 1,	 the	 input	 document	 (electronic,	 patient,	 records,	 epr,	
regarded,	 implicit,	 source,	 clinical,	 behavior,	 problem	 solving,	 knowledge,	
systematically,	compiled,	clinicians).	The	model	can	output	the	sequence	tag	(B-KP,	I-
KP,	I-KP,	O,	O,	B-KP,	I-KP,	B-KP,	I-KP,	B-KP,	I-KP,	O,	O,	O)	where	the	keyphrases	can	be	
generated	 by	 decoding	 the	 outputs	 tags	 (electronic	 patient	 records,	 implicit	 source,	
clinical	behavior,	problem-solving	knowledge).	
Here,	we	 leverage	 the	document-level	context	by	combining	hierarchical	attention	

(i.e.,	adding	word-level	and	sentence-level	attentions	in	a	hierarchical	fashion	to	create	
the	document	vector),	improving	the	performance.	Thus,	all	the	sentences	in	the	form	
of	embeddings	followed	by	their	corresponding	attentions	will	be	used	to	complement	
the	understanding	of	the	current	sentence.	In	simple	words,	the	input	to	our	model	will	
be	all	the	sentences	from	a	single	document,	and	for	each	sentence,	we	find	its	relevance	
compared	to	other	sentences	and	their	words	from	the	within	the	same	document	to	
calculate	hierarchical	attention	in	understanding	the	context.	

3.1.2. High-Level	Design	

Our	approach	to	ML	model	architecture	includes	creating	synthetic	training	data,	pre-
training,	encoder	with	neural	attention	+	decoder,	and	fine-tuning	with	actual	labeled	
data	as	illustrated	in	Fig.	2.	Inspired	by	Guohai	et	al.	[12]	and	Saad	et	al.	[43]	research	
works,	 firstly,	 we	 train	 the	 WE	 model	 and	 bidirectional	 language	 model	 (BiLM)	 as	
shown	in	Fig.	3	using	unlabeled	data	and	then	transfer	their	knowledge	into	the	actual	
model’s	initial	layers	for	embedding	and	LSTM	respectively.	Secondly,	all	the	sentences	
from	the	single	document	are	fed	into	the	model	as	a	batch	at	a	given	time,	where	each	
word	 in	 the	 sentence	 is	 transformed	 into	 a	 vector	 with	 the	 WE	 model.	 Then,	 we	
introduce	the	abstraction	of	hierarchical	attention	—	attention	at	various	levels,	namely	
at	 the	word	 and	 sentence	 levels	—	 to	 aggregate	 them	 into	 sentence	 and	document-
vectors,	respectively.	

	

Figure	2.	High-Level	Design	of	the	methodology.	
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Figure	3.	Multi-stage	deep	learning	model	based	on	hierarchical	context	and	transfer	learning	

Using	these	embedding	and	attention	vectors,	we	calculate	the	hierarchical	attention	
for	any	given	word	using	the	second	LSTM,	which	is	further	deduced	into	the	final	LSTM	
network	along	with	the	outputs	of	first	LSTM	(BiLM)	network	completely,	encoding	the	
one	document-at-a-time.	Lastly,	we	use	the	encoded	information	to	feed	the	Conditional	
Random	Fields	(CRF)	layer	which	then	decodes	the	best	probable	sequence	decisions	to	
mark	the	output	labels	with	BIO	token	tag	representations	which	are	used	to	group	the	
tokens	 and	 identify	 the	 KP.	 Later,	 we	 turn	 to	 fine-tune	 the	 model	 to	 enhance	 its	
performance	using	a	minimally	labeled	dataset.	

3.2. Synthetic Data 

While	we	lack	a	labeled	dataset,	domain-adapted	or	fine-tuned	models	can	be	used	to	
create	labels	i.e.,	synthetic	labels	which	helps	us	to	train	the	initial	ML	model.	Later,	the	
model	can	be	fine-tuned	with	the	HDE	labels	to	identify	the	actual	keyphrase,	avoiding	
the	potential	exhaust	of	HDE	labels	during	initial	rounds	of	training.	
To	achieve	this,	firstly,	we	perform	domain	adaptation	of	a	sciSpacy	BERT	model	[38]	

by	generating	 the	KP	 (intermediate)	on	 the	CDSS	dataset	and	use	 them	 to	adapt	 the	
sciSpacy	BERT	to	the	CDSS	sub-domain.	Then,	we	generate	the	KP	(synthetic)	on	the	
CDSS	dataset	and	mark	the	 labels	 in	the	BIO	format	on	the	texts	without	HDE	labels,	
namely	the	synthetic	dataset	with	labels	for	the	CDSS	sub-domain.	We	use	this	dataset	
to	train	and	test	our	ML	model,	as	discussed	in	the	following	sections.	

3.3. Pre-Training 

3.3.1. Word	Embedding	(WE)	Model	

A	WE	is	mathematical	vector	representation	of	a	given	word,	which	ensures	minimal	
distance	 between	 the	 vectors	 with	 words	 of	 similar	 meaning.	 These	 embeddings	
capture	 the	 language	 semantics	 and	 syntactic	 information	 using	 the	Word2Vec	 [44]	
skip-gram	approach	and	are	used	as	input	to	train	deep	learning	models.	We	have	also	
experimented	with	creating	fastText	[45,	46]	and	GloVe	[47]	embeddings	as	alternative	
embedding	 models	 to	 evaluate	 the	 performance	 difference	 between	 them	 in	 our	
approach.	
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3.3.2. Bi-Directional	Language	Modelling	(BiLM)	

To	learn	the	probability	distribution	over	sequences	of	words,	we	use	a	shallow	layered	
bidirectional	 recurrent	 neural	 network	 [48]	 (e.g.,	 LSTM	 and	 GRU)	 to	 learn	 the	 joint	
probabilities	represented	by	WE.	To	ensure	that	the	network	learns	such	a	distribution,	
we	measure	its	perplexity.	Such	a	network	that	learns	the	word	distribution	is	known	
as	 the	 BiLM	 [39].	 It	 computes	 the	 conditional	 probability	 of	 occurrence	 of	 the	 next	
word(𝑤$ )	 based	 on	 the	 previous(𝑤!, … , 𝑤$&! )	 and	 future	 words(𝑤$'!, … , 𝑤% )	 in	 a	
sentence(s)	as	shown	in	Eq.	(A.	1),(A.	2)	[39],	where	each	sentence(s)	is	represented	by	
last	 word’s	 context	 (given	 by	 LSTM’s	 cell	 state)	 in	 both	 left( 	𝑐	-⃖--%() )	 and	 right( 	𝑐	---⃗ %() )	
directions.	Here	Eq.	(A.	2)	is	the	probability	of	LM	in	the	reversal	order	when	compared	
with	the	Eq.	(A.	1).	

𝑝(𝑤!, 𝑤", … , 𝑤%) = 𝑝(𝑤"|𝑤!)…𝑝(𝑤%|𝑤%&!) =1𝑝(𝑤$|𝑤!, 𝑤", … , 𝑤$&!)
%

$*"

	

(A.	1)	

𝑝(𝑤%, 𝑤%&!, … , 𝑤!) = 𝑝(𝑤%&!|𝑤%)…𝑝(𝑤!|𝑤") = 1 𝑝(𝑤$|𝑤%, 𝑤%&!, … , 𝑤$'!)
!

$*%&!

	

(A.	2)	
𝑠 = [	𝑐	-⃖--%(); 	𝑐	---⃗ !()]	

(A.	3)	
	
Both	 the	 forward	 and	 backward	 LSTM	 encode	 the	 history	 of	 previous	 tokens	 in	 the	
respective	directions	into	fixed	dimensional	vectors	(	ℎ	-⃖---$&!() , 	ℎ	----⃗ $&!() )	for	a	given	word(𝑤$),	
where	 a	 soft-max	 layer	 maximizes	 the	 likelihood(p)	 of	 the	 word(𝑤$ )	 in	 the	 given	
sentence(s)	 in	 the	 corpus.	 After	 training,	 a	 BiLM	 can	 represent	 the	 sentence	 of	 a	
document	 by	 concatenating	 the	 last	 cell	 (i.e.,	 the	 last	 word	 of	 the	 sentence)	 state	
carrying	the	context	in	either	direction	to	represent	the	input	sentence	as	shown	in	Eq.	
(A.	3).	

3.4. Hierarchical-Attention-BiLSTM-CRF Model 

3.4.1. Encoder	

As	illustrated	in	Fig.	4,	this	architecture	is	adopted	from	those	presented	by	Zichao	Yang,	
Guohai	Xu	and	Luo	L	et	al.	[11,	12,	49].	In	contrast	to	the	prior	works,	we	are	limited	by	
the	 labeled	 data.	 To	 adeptly	 use	 the	 labels,	 we	 encode	 one	 document	 at-a-time	 to	
capture	 document-level	 context	with	 a	 stacked	 BiLSTM	 [11].	 Here,	 the	 rudimentary	
layers	of	stacked	BiLSTM	are	initiated	with	a	transfer	strategy	from	pre-trained	WE	and	
BiLM	models’	weights.	
The	embedding	and	first	LSTM	layers	in	our	encoder	share	the	same	architecture	as	

the	pre-trained	models,	which	can	seamlessly	transfer	the	model	parameters	or	weights	
between	the	models	[12].	Using	the	transfer	strategy,	our	model	can	efficiently	initialize	
and	learn	from	the	synthetic	dataset	in	identifying	the	KP.	
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Figure	4.	Word	encoding	with	Hierarchical-Attention-BiLSTM	with	Document-level	context	

We	 use	 all	 the	 sentences	 of	 one	 document,	𝑑 = (𝑠!, 𝑠", … , 𝑠#) ,	 each	 sentence	𝑠$ =
(𝑤$!, 𝑤$", … , 𝑤$%)	and	each	word	𝑤$+∀𝑡 ∈ [1, 𝑛].	We	embed	the	words	into	a	vector	(𝑥$+)	
through	 an	 embedding	 matrix	 (We).	 BiLSTM	 summarizes	 the	 bidirectional	 context	
information	as	shown	in	Eq.	(B.	1)(B.	2)(B.	3)	where	each	word’s	hidden	state	(ℎ$+)	is	
obtained	by	concatenating	the	forward	(	ℎ	-⃖---$+)	and	backward	(	ℎ	----⃗ $+)	hidden	state	vectors,	
i.e.,	ℎ$+ = <	ℎ	-⃖---$+; 	ℎ	----⃗ $+=.	Here	 the	hidden	state	vector	provides	 sentence-level	 context	 to	
each	word	[12].	

𝑥$+ = 𝑊, . 𝑤$+∀𝑡 ∈ [1, 𝑛]	
(B.	1)	

	ℎ	----⃗ $+ = 𝐿𝑆𝑇𝑀-----------⃗ (𝑥$+)∀𝑡 ∈ [1, 𝑛]	
(B.	2)	

	ℎ	-⃖---$+ = 𝐿𝑆𝑇𝑀-⃖----------(𝑥$+)∀𝑡 ∈ [1, 𝑛]	
(B.	3)	

	
We	calculate	word	similarity	(𝑢$+)	using	a	neural	network’s	parameter	for	weighted	

matrix	(𝑊-)	and	word	representation	(ℎ$+)	given	by	BiLSTM	along	with	bias	(𝑏-)	[50].	
Then	we	 calculate	 the	word-level	 attention	by	 aggregating	 the	ℎ$+ 	and	𝑢$+ )	 using	 a	
word-level	context	vector	(𝑢-)	to	get	a	word-level	normalized	importance	weight	(𝛼$+).	
Finally,	we	compute	the	sentence	vector	(𝑠$)	as	a	weighted	sum	of	word	representations	
as	 shown	 in	Eq.	 (C.	 1)(C.	 2)(C.	 3).	 Initially,	𝑢- 	is	 the	neural	network	parameter	with	
random	initialization	and	learned	during	the	training	process.	
	

𝑢$+ = tanh(𝑊- . ℎ$+ + 𝑏-) ∀𝑡 ∈ [1, 𝑛]	
(C.	1)	
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𝛼$+ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥P𝑢$+. . 𝑢-Q =
ex pP𝑢$+. . 𝑢-Q
∑ ex pP𝑢$+. . 𝑢-Q+

∀𝑡 ∈ [1, 𝑛]	

(C.	2)	
	

𝑠$ =V𝛼$+
+

. ℎ$+∀𝑡 ∈ [1, 𝑛]	

(C.	3)	
	
Similarly,	a	document	vector	can	be	computed	using	sentence-level	attention	over	

the	 sentence	 vectors	 ( 𝑠$ )	 [11,12]	 using	 a	 second	 BiLSTM	 network	 and	 thereby	
concatenating	the	forward	(	ℎ	-⃖---$)	and	backward	(	ℎ	----⃗ $)	states	to	encode	a	sentence,	ℎ$ =
<	ℎ	-⃖---$; 	ℎ	----⃗ $=	based	on	neighbor	sentences	as	shown	in	Eq.	(D.	1)(D.	2).	

 	
	ℎ	----⃗ $ = 𝐿𝑆𝑇𝑀-----------⃗ (𝑠$)∀𝑖 ∈ [1,𝑚]	

(D.	1)	
	ℎ	-⃖---$ = 𝐿𝑆𝑇𝑀-⃖----------(𝑠$)∀𝑖 ∈ [1,𝑚]	

(D.	2)	
	

As	shown	in	Eq.	(E.	1)(E.	2)(E.	3),	 to	estimate	the	sentence-level	context	vector	(𝑢/),	
firstly	 we	 use	 neural	 network	 parameter	 for	 weighted	 matrix	 ( 𝑊/ ),	 sentence	
representation	 (ℎ$ )	 and	 bias	 (𝑏/)	 to	 calculate	 sentence-similarity	 (𝑢$ ).	 Secondly,	we	
randomly	 initialize	 us	 and	 learn	 it	 during	 training,	 to	 calculate	 the	 sentence-level	
normalized	importance	weight	(𝛼$),	which	yields	a	document	vector(di)	for	each	word	
representing	 which	 sentences	 are	 important	 for	 a	 given	 word	 to	 consider	 while	
identifying	it	as	a	KP	as	provided	[11].	
	

𝑢$ = tanh(𝑊/. ℎ$ + 𝑏/)∀𝑖 ∈ [1,𝑚]	
(E.	1)	

𝛼$ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥P𝑢$. . 𝑢/Q =
ex pP𝑢$. . 𝑢/Q
∑ ex pP𝑢$. . 𝑢/Q$

∀𝑖 ∈ [1,𝑚]	

(E.	2)	
	

𝑑$ = 𝛼$ . ℎ$∀𝑖 ∈ [1,𝑚]	
(E.	3)	

	
Unlike	the	previous	work	as	proposed	by	Guohai	Xu	et	al.	[12],	finally	we	concatenate	

the	first	LSTM’s	hidden	local	state(hit)	with	the	document	vector	(di)	into	a	new	vector	
[ℎ$+; 𝑑$]∀𝑡 ∈ [1, 𝑛] ,	 based	 on	 given	 the	 word’s	 relatedness	 to	 other	 words	 in	 the	
document,	 in	 specific	 providing	 document-level	 context	 to	 each	 word.	 Next,	 the	
extended	 representation	will	 be	 further	used	by	 the	 final	 LSTM	 layer	 to	 identify	 the	
labels.	

3.4.2. Decoder	

As	described	by	Ling	Luo	et	al.	[49],	we	use	the	CRF	[9]	layer	as	the	decoder	to	produce	
the	confidence	scores	for	the	words	having	each	possible	label	as	the	output	score	of	the	
decoder.	 Given	 the	 transition	 and	 network	 scores,	 we	 make	 tagging	 decisions	
independently,	considering	P	the	matrix	of	scores	of	the	network	output.	
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The	 score	 of	 sentence	 ( 𝑠$ ),	 along	 with	 a	 sequence	 of	 predictions	 𝑦$ =
P𝑦$!, … , 𝑦$0 , … , 𝑦$+Q,	is	given	by	the	sum	of	transition	scores	and	network	scores	as	shown	
in	Eq.(F.	1).	Here	each	Pa,b	represents	the	matrix	of	scores	of	bth	tag	of	the	ath	word	in	the	
sentence.	 Furthermore,	 tagging	 transformation	 matrix	 (T)	 is	 trained	 as	 the	 model	
parameter.	 Here	 Ta,b	 represents	 the	 transition	 score	 from	 tag	 a	 to	 tag	 b	 through	
successive	words	where	T0,b	is	the	initial	score	for	the	starting	from	tag	b.	
To	 yield	 the	 conditional	 probability	 of	 the	 path	 y,	 we	 normalize	 the	 score	 for	 all	

possible	paths	using	a	soft-max	 function	using	Eq.	 (F.	2).	Then,	we	maximize	 the	 log	
probability	of	valid	tag	sequences.	We	can	obtain	the	maximum	score	using	the	dynamic	
programming	approach	of	Viterbi	decoding	[51]	for	the	best	tag	path	given	by	Eq.	(F.	3).	

𝑠𝑐𝑜𝑟𝑒(𝑠$ , 𝑦$) = V[𝑇1($,4&!),1($,4) + 𝑃64,1($,4)7]
%

4*8

			∀𝑖 ∈ [𝑚, 1]	

(F.	1)	

𝑝(𝑦$|𝑠$) =
ex pP𝑠𝑐𝑜𝑟𝑒(𝑠$ , 𝑦$)Q
∑ 𝑠𝑐𝑜𝑟𝑒(𝑠$ , 𝑦$)19!

				∀𝑖 ∈ [𝑚, 1]	

(F.	2)	
𝑧$ 	= 	 𝑎𝑟𝑔𝑚𝑎𝑥

	1	; !
P𝑠𝑐𝑜𝑟𝑒(𝑠$ , 𝑦$)Q		∀𝑖 ∈ [𝑚, 1]	

(F.	3)	
	
3.5. Fine-Tuning with Gold Standards 

Now	with	the	newly	modified	neural	architecture	capable	of	learning	from	document-
level	understanding	provided	by	hierarchical	context	at	both	word-level	and	sentence-
level	attentions,	we	used	this	further	to	train	it	with	synthetic	data	first	and	fine-tune	it	
later	with	GS	Annotations	to	align	the	model’s	predictions	to	HDE	expectations.	The	new	
architecture	 helps	 the	model	 discriminate	 the	 input	 data	 by	 document-level	 context	
when	identifying	an	entity	and	optimize	the	GS	Annotations	required	to	fine-tune.	We	
will	discuss	the	effectiveness	of	the	new	methodology	through	results	in	the	upcoming	
sections.	

4. Experiments	and	Results	

4.1. Dataset 

The	text	corpus	was	obtained	from	PubMed	by	filtering	the	CDSS	literature	in	the	
MEDLINE	format.	Of	these	research	articles,	those	with	a	valid	PMID	(PubMed	Identifier	
for	 a	 unique	 article)	 were	 retained	 for	 XML	 parsing,	 where	 we	 retained	 the	 MeSH	
(Medical	 Subject	 Headings)	 terms	 and	 associated	 them	with	 corresponding	 articles.	
Tables	1	and	2	show	the	details	of	the	dataset.	Appendix	A	shows	detailed	information	
on	the	dataset	at	various	levels	of	text	pre-processing	phases.	

Table	1.	Details	of	the	CDSS	Dataset.	
-	 Full	CDSS	(FC)	 FC	with	PMIDs	 GS	(+8	ACM)	 No/Little	Abs.	 Final/Total	Dataset	

Articles	 3545	 3326	 133	 99	 3281	
No/Little	Abs.	-	Abstracts	having	less	than	3	sentences	including	the	title	
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	Table	2.	CDSS	Dataset:	train,	validate	and	test.	
-	 Total	 Unlabeled	(with	Synthetic	KP)	 Train	 Validate	 Test	(GS91)	 GS(GS42)	

Articles	 3281	 3148	 1049	 2099	 91	 42	
Here	GS91	and	GS42	are	2	sets	of	HDE-labeled	datasets.	

In	the	total	dataset	(3545),	after	parsing	the	information	from	PubMed	in	XML	format,	
we	were	left	with	3326	articles	containing	duplicates	of	the	GS	dataset.	Furthermore,	
we	had	2	sets	of	human-labeled	datasets	(GS91	and	GS42).	We	used	GS91	as	unseen	data	
to	compare	the	model’s	performance,	and	the	GS42	was	used	to	fine-tune	the	ML	model	
later.	During	the	pre-processing	of	the	articles,	we	removed	the	abstracts	with	little	or	
no	 abstracts	 by	 checking	 the	minimum	 number	 of	 sentences	 (<	3).	 Now,	 only	 3148	
unlabeled	 articles	 remained,	 and	we	 created	 synthetic	 KP	 and	marked	 the	 labels	 to	
create	a	synthetic	labeled	dataset	for	the	CDSS	domain	with	a	1:2	train-validation	split.	
Cohen’s	kappa	rates	for	the	first	42	(GS42)	abstracts	were	0.93	(between	annotators	1	
and	2)	 and	0.73	 (between	 annotators	 1	 and	3)	 [37].	 For	 the	 second	 set	 of	 abstracts	
(GS91),	Cohen’s	kappa	rates	were	0.87	(between	annotators	1	and	2)	and	0.97	(between	
annotators	1	and	3).	

4.2. Synthetic Label Creation 

To	ensure	the	high-quality	creation	of	synthetic	labels,	we	experimented	with	different	
unsupervised	algorithms	(namely,	PositionRank,	MultiPartiteRank,	and	TopicRank)	and	
NER	(i.e.,	sciSpacy)	to	identify	the	KP	from	a	given	text	and	compared	them	with	the	
manual	labels	to	compare	the	performance.	The	results	are	shown	in	Table	3.	We	found	
that	BERT-based	sciSpacy	[38]	outperforms	other	unsupervised	methods	in	generating	
the	KP	close	to	HDE	labels.	
Table	3.	Evaluation	of	generated	synthetic	KP	with	different	approaches	
Approach	 Accuracy	 Misclassification	 Precision	 Recall	 Specificity	 F1-Score	
sciSpacy	 0.69	 0.31	 0.36	 0.81	 0.66	 0.50	
PositionRank	 0.76	 0.23	 0.39	 0.36	 0.86	 0.38	
MultiPartiteRank	 0.76	 0.24	 0.38	 0.36	 0.86	 0.37	
TopicRank	 0.77	 0.23	 0.39	 0.36	 0.87	 0.37	

4.3. Preparation 

4.3.1. CDSS	Domain	Adaptation	

We	made	domain	 adaptation	 for	 the	 sciSpacy	 LM	 (from	biomedical	 entities	 to	 CDSS	
entities)	to	make	it	more	suitable	for	the	CDSS	context	[32,33].	To	fine-tune	the	model,	
we	 used	 the	 synthetic	 labels	 created	 from	 the	 sciSpacy	model’s	 prediction	 on	 CDSS	
unlabeled	corpus,	like	a	semi-supervised	approach	as	proposed	by	Syed	et	al.	[52].	To	
unfold	the	challenges	of	creating	a	better-fine-tuned	model,	we	fine-tuned	it	at	different	
levels	and	different	dataset	combinations	to	look	for	the	optimal	one	(Table	4	and	Fig.	
5).	Of	 the	 experiments	 conducted,	we	 found	 that	 Level	 1	 fine-tuning	of	 the	 sciSpacy	
model	 with	 the	 synthetic	 dataset	 yielded	 better	 results,	 and	 further	 fine-tuning	
overfitted	the	model’s	predictions.	
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Table	4.	Evaluation	of	fine-tuning	sciSpacy	model	for	CDSS	
Fine-Tune	 Base	 Model	 Train	Dataset	 GS	Dataset	 Precision	 Recall	 Accuracy	 F1-

Score	

Level	0	 sciSpacy	 sciSpacy	
(en_core_sci_lg)	 PubMed	

42	 0.61	 0.18	 0.93	 0.27	
91	 0.59	 0.23	 0.97	 0.33	
133	 0.62	 0.22	 0.96	 0.33	

Level	1	 sciSpacy	 cdssSciSpacy	 Synthetic	CDSS	(1866	
Train	/	622	Val)	

42	 0.70	 0.38	 0.97	 0.5	
91	 0.73	 0.64	 0.99	 0.68	
133	 0.74	 0.59	 0.99	 0.66	

Level	2	 cdssSciSpacy	 cdssSciSpacy	GS42	 42	GS	(33	Train	/	
9	Val)	 91	 0.57	 0.64	 0.99	 0.60	

Level	2	 cdssSciSpacy	 cdssSciSpacy	GS91	 91	GS	(72	Train	/	
19	Val)	 42	 0.66	 0.38	 0.97	 0.48	

Level	2	 sciSpacy	 sciSpacy	GS42	 42	GS	(33	Train	/	
9	Val)	 91	 0.57	 0.54	 0.99	 0.55	

Level	2	 cdssSciSpacy	 cdssSciSpacy	GS66	1	 133	GS	(52	Train	/	
14	Val)	 67	 0.63	 0.62	 0.99	 0.62	

1Repeated	experiment	50	Times	on	random	samples	of	GS	133.	

4.3.2. Token	Tagging	Representation	

To	identify	an	N-gram	sequence,	we	took	the	help	of	token	tagging	systems	where	each	
KP	 is	marked	with	 either	BIO	or	BILOU	encoding	 schema	 [42]	 to	 represent	 the	 text	
chunks	effectively.	Here,	we	conducted	the	experiments	on	both	schemas	to	identify	the	
better	one	that	fits	the	CDSS	corpus,	and	the	results	are	shown	in	the	Table	5.	As	both	
the	token	tagging	representations	have	near-similar	performance	metrics,	we	chose	to	
stay	 with	 BIO	 token	 tagging	 for	 the	 label	 marking	 because,	 for	 the	 CDSS	 domain	 it	
outperforms	BILOU	by	a	slight	margin	in	F1-Scores.	
Table	5.	Entity-level	metric	evaluation	-	token	tagging	

Encoding	Schema	 Dataset	 Precision	 Recall	 Accuracy	 F1-
Score	

BIO	
Validation	Dataset	(Synthetic)	Labels	 0.75	 0.68	 0.92	 0.71	

GS42	Labels	 0.60	 0.50	 0.88	 0.54	
GS91	Labels	 0.61	 0.50	 0.88	 0.55	

BILOU	
Validation	Dataset	(Synthetic)	Labels	 0.76	 0.60	 0.92	 0.69	

GS42	Labels	 0.60	 0.41	 0.87	 0.49	
GS91	Labels	 0.65	 0.42	 0.86	 0.51	

4.3.3. Stemming	vs.	Non-Stemming	

Stemming	 the	 vocabulary	was	 one	 of	 the	 normalization	 techniques	 involved	 in	 pre-
processing	the	text	data	before	we	feed	it	to	ML	models.	It	represents	the	morphological	
structure	of	the	language.	For	the	English	corpora,	while	stemming	operation	seems	to	
benefit	 the	 document	 indexing,	 sometimes	 it	 can	 worsen	 the	 effects	 of	 the	 topic	
understanding	 [53].	 To	 analyze	 the	 effect	 of	 stemming	 on	 CDSS	 corpora,	 we’ve	
experimented	with	the	performance	of	KP	identification	concerning	stemmed	and	non-
stemmed	KP	on	both	the	synthetic	labels	and	GS-labeled	data.	The	results	are	shown	in	
the	 Tables	 6,	 7.	 The	 results	 indicated	 that	 the	 performance	 of	 the	 ML	 models	
deteriorated	with	the	stemming	of	words,	so	we	opted	for	non-stemming	in	the	text	pre-
processing	steps.	
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Table	6.	Comparison	of	stemming	evaluation	on	Validation	Dataset	(Synthetic).	

Metrics	
Validation	Data	Labels	

Non-Stemming	 Stemming	
B-KP	 I-KP	 O	 B-KP	 I-KP	 O	

Accuracy	 0.87	 0.92	 0.92	 0.85	 0.91	 0.90	
Misclassification	 0.13	 0.09	 0.08	 0.16	 0.09	 0.10	

Precision	 0.85	 0.80	 0.91	 0.83	 0.74	 0.87	
Recall	 0.92	 0.76	 0.81	 0.92	 0.55	 0.77	

Specificity	 0.83	 0.96	 0.96	 0.74	 0.97	 0.95	
F1-Score	 0.88	 0.78	 0.86	 0.87	 0.63	 0.82	

Table	7.	Comparison	of	stemming	evaluation	on	GS42	Dataset.	

Metrics	
GS42	Labels	

Non-Stemming	 Stemming	
B-KP	 I-KP	 O	 B-KP	 I-KP	 O	

Accuracy	 0.57	 0.86	 0.51	 0.52	 0.86	 0.53	
Misclassification	 0.44	 0.15	 0.49	 0.48	 0.14	 0.47	

Precision	 0.30	 0.40	 0.83	 0.32	 0.41	 0.81	
Recall	 0.74	 0.67	 0.35	 0.80	 0.36	 0.33	

Specificity	 0.52	 0.88	 0.85	 0.42	 0.93	 0.47	
F1-Score	 0.43	 0.50	 0.49	 0.45	 0.38	 0.47	

4.3.4. Loading	Pre-Trained	Models	

As	discussed	in	the	Section	3.4.1	and	shown	in	Figures	2	and	3,	we	first	trained	the	WE	
model	and	the	BiLM	separately	on	the	unlabeled	corpus	and	then,	using	the	approach	of	
transfer	learning,	updated	the	weights	of	the	encoder’s	initial	layers	before	we	started	
training	the	model.	After	training,	we	exported	the	parameter	weights	of	both	models	
individually	and	imported	them	later	into	the	LSTM	network.	

4.3.5. Training	

After	obtaining	synthetic	 labels	generated	from	the	best	performing	domain-adapted	
model	 (as	mentioned	 in	 the	Sections	4.2	 and	4.3.1),	we	 labeled	 the	KP	with	 the	BIO	
format	[42]	to	start	the	ML	model	training	procedure	for	30	epochs.	Then,	we	evaluated	
the	 sequence-level	 entity	 metrics	 using	 standard	 ML	 metrics,	 i.e.,	 Precision,	
Recall/Sensitivity,	 F1-Score	 and	Accuracy.	The	parameters	 and	 configurations	of	 the	
Hier-Attn-BiLSTM-CRF	neural	network	model	are	as	follows:	

• WE	Dimension:	300	
• LSTM	hidden	layer	dimension:	256	
• Dropout	Ratio:	0.2	
• Epoch:	30	(number	of	times	every	document	is	shown	to	ML	model)	
• Batch	Size:	1	(one	document	at	a	time	shown	to	model,	to	calculate	the	context	
with	documents	having	varying	sentences	with	52	sentences	being	the	maximum	
for	single	abstract)	

• Max	sentence	length:	128	(For	CDSS	corpus,	maximum	words	per	sentence	are	
105)	
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• WE	Type:	Word2Vec	
• Text	pre-processing:	remove	stop	words	and	punctuation	
• Stemming:	no	
• Train-validation	split:	1:2	
• Pre-trained	sciSpacy	BERT	model:	en_core_sci_lg	

4.4. Evaluation 

4.4.1. Leveraging	Document-level	Context	

Understanding	the	textual	context	while	KP	identification	was	significant	in	predicting	
relevant	 candidate	 terms	 from	 a	 given	 text	 [10,	 54].	 To	 understand	 that,	 we’ve	
experimented	 with	 the	 use	 of	 different	 encoding	 combinations	 for	 word-level,	
character-level	embeddings	and	CNN-based	text	features	(Length,	POS	tag,	Text	Rank,	
TF-IDF	Score	and	Position	of	First	Occurrence	[55])	compared	with	the	hierarchical-
attention	and	 sentence-level	 embedding	working	at	 the	document-level	 context.	The	
results	 are	 shown	 in	 the	 Table	 8	 and	 Fig.	 5.	 The	 experiment	 showed	 that	 our	
methodology,	 which	 included	 a	 hierarchical	 context-driven	 model,	 had	 improved	
metrics	over	the	base	BiLSTM-CRF	model	and	gave	a	head-to-head	competition	to	the	
other	models	with	Character	Embedding	and	CNN-based	Text	Features	by	only	losing	
with	the	lesser	Recall	values.	
Table	8.	Comparison	of	evaluations	on	different	contextual	level	attention	

Model	 Encoder	Details	 Experiment	
Runs	

Train	Dataset	 Test	Dataset	 Precision	 Recall	 Accuracy	 F1-
Score	

BiLSTM-CRF	 BiLSTM(Word	Embd’s)	 1	 1049	
Synthetic	

2099	
Synthetic	

0.72	 0.66	 0.92	 0.69	
42	GS	 0.54	 0.46	 0.86	 0.49	
91	GS	 0.59	 0.48	 0.88	 0.53	

BiLSTM-CRF	 BiLSTM(Word	Embd’s)	+	
BiLSTM(Char	Embd’s)	 1	 1049	

Synthetic	
2099	

Synthetic	
0.70	 0.70	 0.85	 0.70	

42	GS	 0.52	 0.56	 0.78	 0.54	
91	GS	 0.58	 0.53	 0.77	 0.55	

BiLSTM-CRF	
BiLSTM(Word	Embd’s)	
+	BiLSTM(Char	Embd’s)	
+	CNN(Text	Features)	 1	 1049	

Synthetic	
2099	

Synthetic	
0.73	 0.71	 0.85	 0.72	

42	GS	 0.56	 0.55	 0.78	 0.55	
91	GS	 0.58	 0.55	 0.78	 0.57	

Hier-Attn-BiLSTM-CRF	
BiLSTM(Word	Embd’s)	
+	Hierarchical	Context	

(word-level	sentence-level	
attentions)	

1	 1049	
Synthetic	

2099	
Synthetic	

0.75	 0.68	 0.92	 0.71	
42	GS	 0.6	 0.5	 0.88	 0.54	
91	GS	 0.61	 0.5	 0.88	 0.55	

	

Figure	5.	Comparison	of	results	for	domain	adaptation	and	hierarchical	context	(document	context	through	word-level	
and	sentence-level	attention).	
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4.4.2. Fine-tuning	with	Gold	Standard	(GS)	Labels	

We	 harnessed	 the	 semi-supervised	 learning	 approach	 and	 further	 fine-tuned	 the	
Hierarchical-Attention	based	BiLSTM-CRF	model	to	strengthen	its	prediction	[52].	The	
experiment	 included	adding	the	truth	to	synthetic	data	proportions	at	 intervals	with	
multiples	of	2	between	2	to	8	documents	with	true	or	GS	labels	are	shown	for	every	
batch	of	100	synthetic	labeled	documents.	It	measured	the	performance	of	learning	with	
human	 feedback	 over	 the	 iterations	 of	 ML	 model	 training	 by	 running	 independent	
experiments	 for	 10	 and	50	 times.	As	 shown	 in	 Fig.	 6,	 the	 results	 demonstrated	 that	
exposing	2-4	true	samples	to	100	synthetic	samples	enabled	the	model	to	learn	more	
efficiently	from	the	minimum	labeled	dataset.	The	tabular	details	of	the	performance	
metrics	for	the	pictorial	representation	are	shown	in	Appendices	B	and	C.	

	

Figure	6.	Results	for	fine-tuning	with	Gold	Standard	(GS)	Labels	

5. Discussion	

While	the	traditional	decision	support	systems	have	been	designed	as	rule-based	or	
semantic-driven	 applications,	 identifying	 such	 rules	 to	 match	 human	 expertise	 is	
complex	due	to	the	collaborative	consensus	between	the	labels	curated.	To	create	a	rule,	
finding	such	patterns	in	the	text	is	tedious	for	humans	and	leaves	out	a	scope	for	us	to	
automate.	 Regarding	 processing	 texts	 efficiently	 and	 discovering	 patterns,	 ML	
algorithms	have	unparalleled	advantages	and	an	ability	to	learn	from	minimal	human	
labels,	as	they	have	brighter	and	broader	potential	in	many	application	areas.	
Identifying	the	KP	that	have	higher	significance	in	summarizing	text	is	a	different	task	

from	ours.	Even	though	it	is	similar	on	the	surface,	it	is	completely	different	underneath	
because	the	KP	are	not	a	fixed	set	of	terms	that	can	be	objectively	marked	as	correct.	
Despite	 their	 importance	 in	 text	 understanding	 spanning	 the	 best	 coverage	 and	
relevance	 to	 the	 given	 text,	 manual	 labeling	 is	 expensive,	 and	 automating	 human	
understanding	of	the	text	is	challenging,	especially	in	highly	specialized	fields,	such	as	
medicine.	
Although	 various	 ML	 approaches	 have	 evolved	 to	 solve	 some	 of	 the	 common	

problems	of	the	text,	they	fail	to	understand	the	context	behind	the	annotation	due	to	
the	long-range	dependencies	of	the	natural	language.	To	solve	this	problem,	we	used	a	
semi-supervised	approach	with	hierarchical	attention	over	text	to	provide	a	larger	but	
still	focused	context	(one	document)	to	the	model	while	working	with	a	word.	As	we	
advance,	 we	 will	 discuss	 the	 contributions,	 interpret	 the	 experiment	 results,	 and	
challenges	of	this	work.	
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5.1. Result Interpretation 

The	lack	of	labeled	data	is	one	of	the	key	challenges	of	this	project.	Thus,	we	used	semi-
supervised	 learning	approaches	 to	 synthetically	 create	 the	 labels	 from	a	pre-trained	
model	and	compare	them	with	a	domain-level	fine-tuned	model.	To	assess	the	quality	
of	 the	 synthetic	 labels,	 we	 experimented	 with	 different	 approaches,	 including	
unsupervised	 ranking	 approaches	 [18–21]	 and	 the	pre-trained	models	 based	on	 the	
Transformer	 neural	 architectures	 [4,	 5].	We	 found	 that	 sciSpacy	 [38]	 (BERT	model)	
outperforms	the	others	in	matching	the	synthetic	labels	to	the	GS	candidate	terms,	as	
shown	in	Table	3.	Although	the	F1-Score	of	0.5	does	not	seem	ideal,	we	must	recognize	
that	this	is	a	very	challenging	task,	even	for	HDE.	Although	the	task	can	be	presented	as	
a	simple	yes	or	no	task,	the	actual	identification	is	far	more	complicated	than	a	binary	
task.	The	HDE	has	to	use	rich	background	knowledge	to	make	the	judgment.	
To	 strengthen	 the	 pre-trained	 model’s	 performance	 in	 generating	 the	 synthetic	

labels,	we	adapted	it	to	the	CDSS	domain.	We	observed	that	fine-tuning	with	synthetic	
labels	provided	us	with	much	better	labels	than	the	naive	sciSpacy	model.	To	examine	
it	more	closely,	we	performed	supplementary	fine-tuning	with	different	combinations	
(42	GS,	91	GS	and	67	GS	-	different	train-validate-test	data	subsets	each	time	from	133	
GS)	of	the	labeled	dataset	where	each	combination	is	trained	freshly	at	the	respective	
fine-tuning	 level	 (Table	 4).	 We	 understood	 that	 incremental	 fine-tuning	 introduces	
variance	 into	the	LM	and	increases	perplexity	to	drop	its	performance	further	as	the	
fine-tuning	levels	grow.	
To	efficiently	represent	the	token	to	the	ML	model,	we	experimented	with	encoding	

schema’s	-	BIO	and	BILOU	token	tagging	representations	to	identify	that	there	are	no	
significant	differences	in	the	performance	for	the	CDSS	corpus,	but	BIO	slightly	performs	
better	 (Table	 5).	 Although	 standard	 approaches	 in	 the	 NLP	 pre-processing	 include	
either	 stemming	 or	 lemmatization	 resulting	 in	 high	 performance,	 in	 our	 case,	 it	
deteriorates	 the	 topical	 understanding	 and	 inference	 of	 the	 ML	 model.	 We	
experimented	with	the	ML	model’s	performance	on	stemmed	vs.	non-stemmed	tokens,	
and	the	results	shown	in	Tables	6	and	7	align	with	our	conceptual	understanding.	
Once	the	words	are	tokenized,	we	need	embeddings	to	bind	the	token	information	to	

a	vector	to	feed	it	further	to	the	model.	Most	WE	models	work	with	vocabulary	from	the	
existing	 text	 corpus	 and	 fail	 to	 handle	 Out	 of	 Vocabulary	 (OOV).	 To	 solve	 the	 OOV	
problem,	 we	 can	 use	 sub-word	 information	 with	 character	 N-grams	 using	 fastText.	
Using	fastText	reduces	the	length	of	vocabulary	as	it	remembers	sub-word	information.	
While	the	total	vocabulary	with	Word2Vec	is	around	15.8	K,	fastText	has	only	4.7	K	sub-
words.	Also,	 it	only	shows	a	0.5%-1%	improvement,	as	given	by	Benedict	et	al.	 [56].	
Therefore,	we	reverted	to	the	older	Word2Vec	approach	for	pre-training	the	WE	model	
as	it	is	easier	to	transfer	the	embedding	matrix	weights	between	pre-trained	and	actual	
models.	 Our	 methodology	 uses	 index-to-token	 and	 token-to-index	 mapping	 while	
encoding	the	words,	and	the	length	of	the	vocabulary(L)	is	further	used	as	square	matrix	
dimensions	of	the	WE	(We)	matrix,	and	it	helps	us	find	the	similarity	between	any	two	
words.	
We	 now	 introduce	 the	 word-level	 attention	 mechanism	 because	 not	 all	 words	

contribute	 equally	 to	 the	 meaning	 of	 the	 sentence.	 Then,	 we	 aggregate	 the	
representation	of	 those	words	 to	 form	a	 sentence	vector,	which	 is	 in	 return	used	 to	
create	a	document	vector	for	each	word	in	the	broader	context	of	the	document	and	its	
sentences.	 We	 conducted	 experiments	 on	 the	 different	 input	 encoders	 (word-level,	
character-level,	and	text-based	CNN)	with	the	hierarchical	attention-based	model	and	a	
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CRF	decoder.	Furthermore,	we	evaluated	the	performance	of	the	neural	network	with	
input	word	 representations	 bearing	 the	 document-level	 context	 to	 understand	 long-
range	dependencies	of	the	text	and	the	results	are	shown	in	Table	8	and	Fig.	5.	Although	
the	metrics	are	on-par	with	the	other	models,	our	model	had	no	hand-crafted	features	
except	the	pre-training	for	WE	and	LM.	
With	the	increase	in	the	feature	representations,	the	complexity	of	the	evaluation	will	

be	tricky	and	no	 longer	work	at	 the	token	 level.	Still,	 it	needs	to	be	evaluated	on	the	
entity	 level	with	 a	 complete	match	of	 the	GS	 label	 as	proposed	by	Nancy	 et	 al.	 [57].	
Therefore,	 we	 used	 the	 sequence	 labeling	 evaluation	 given	 by	 Hiroki	 et	 al.	 [58]	 to	
decipher	the	results.	As	shown	in	Fig.	4,	our	model	with	hierarchical	attention	improved	
Accuracy	by	10%	compared	to	the	base	model	without	any	character-level	and	textual	
features,	suggesting	an	improvement	in	the	performance	due	to	the	added	hierarchical	
context	provided	to	each	word	representation.	We	also	noted	that	it	has	an	improved	
Precision	over	the	remaining	models	and	allowed	us	to	maintain	the	F1-Score	even	with	
the	decline	in	Recall	values.	
To	further	strengthen	the	ML	model,	we	used	fine-tuning	with	the	GS	labels	to	align	

the	 model’s	 predictions	 from	 synthetic	 to	 GS	 labeling.	 To	 evaluate	 the	 model’s	
performance	after	training,	we	kept	aside	91	GS	and	only	fine-tuned	the	model	with	42	
GS	 labeled	documents	 from	 the	CDSS	 corpus	by	varying	 the	 true	 labeled	documents	
shown	 (0/2/4/6/8	 GS)	 for	 every	 100	 labeled	 documents	 during	 the	model	 training	
process,	marking	the	essence	of	minimal	true	labels	shown.	As	shown	in	Fig.	6,	a	poly-
fit	 curve	over	 the	 scores	 concludes	 that	 showing	2-4	 true	 samples	 for	100	 synthetic	
samples	during	ML	model	training	demonstrates	better	performance.	The	experiments	
and	the	results	guide	us	to	optimize	our	model	and	settings	for	the	operation,	and	we	
hope	the	results	can	be	a	reference	point	for	others	to	plan	their	NLP	tasks.	

5.2. Challenges 

The	 generation	 of	 manually	 labeled	 data	 is	 not	 only	 expensive	 but	 also	 is	 a	 labor-
intensive	and	demanding	task	 in	 the	 fields	 like	medicine.	Circumventing	this	 issue,	a	
small	set	of	samples	can	be	labeled	by	humans.	To	create	such	a	small	set	of	high	quality	
labeled	data,	picking	 the	samples	 from	different	concepts	of	 the	CDSS	sub-domain	 is	
significant	because	it	helps	the	model	to	efficiently	learn	from	the	diversified	samples	
and	their	labels	provided.	Therefore,	effectively	selecting	the	data	for	human	annotation	
exposes	us	 to	one	of	 the	ubiquitous	problems	of	 the	 selection	bias,	 over	picking	 the	
articles	from	the	CDSS	corpora.	Also,	we	encounter	the	same	problem	in	the	selection	of	
data	samples	or	documents	for	the	fine-tuning	process.	
To	effectively	use	the	context,	fastText	works	better	with	sub-word	level	information,	

but	 we	 faced	 challenges	 in	 adapting	 the	 pre-processing	 (splitting	 words	 into	 sub-
words),	post-processing	(combining	sub-words	into	actual	words),	feature	engineering	
(POS	Tags,	TF-IDF,	TextRank	etc.,),	and	calculating	word-level	attention	over	sub-words.	
With	 these	 added	 complexities	 during	 data	 processing	 and	 ML	 training,	 fastText	 is	
usually	slower	but	it	provides	a	rich	context	of	the	language.	
In	the	view	of	the	hierarchical-context,	we	need	all	the	sentences	of	a	single	document	

at-a-time	to	calculate	the	attentions	over	words	and	sentences	to	create	sentence-level	
and	 document-level	 vectors.	 To	 ease	 the	 calculation,	 we	 opted	 to	 use	 the	 dynamic	
batches	for	the	data-loader	i.e.,	a	document	with	a	different	number	of	sentences	will	be	
sent	into	the	encoder-decoder	at	once	during	the	ML	model	training	process.	Ideally,	we	

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 26, 2023. ; https://doi.org/10.1101/2023.01.26.23285060doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.26.23285060
http://creativecommons.org/licenses/by-nc-nd/4.0/


20	

choose	a	static	number	for	the	data-loader	such	as	64	samples	for	one	iteration.	Because	
of	 the	dynamic	nature	of	 the	data-loader,	 the	number	of	 iterations	 for	 the	ML	model	
training	 equals	 the	 number	 of	 documents	 shown,	 ultimately	 surging	 up	 the	 training	
time,	making	it	2-3	times	slower	than	models	without	a	hierarchical-context.	
We	also	 faced	additional	challenges	with	the	newly	and	continuously	added	 labels	

from	 the	 corpus	 in	 the	 fine-tuning	process.	 For	 example,	 to	 engage	broader	HDEs,	 a	
crowd-sourced	 annotation	 approach	 is	 an	 excellent	 option	 to	 engage	 the	 wider	
community.	However,	 identifying	qualified	HDEs	conveniently	to	annotate	 labels	 is	a	
complex	task	and	brings	auxiliary	troubles.	

6. Conclusion	

This	 paper	 implements	 a	 hierarchical	 attention-driven	 KP	 identification	 model	 by	
retaining	 longer	 contextual	 dependencies	 and	 using	 minimal	 labeled	 data.	 It	
incrementally	builds	the	context	at	the	word	and	sentence	levels	across	the	document	
to	understand	the	long-range	context.	The	model	demonstrates	improved	Accuracy	for	
KP	identification	by	adding	document-level	context	through	experimentation.	
The	 domain	 adaptation	 in	 a	 semi-supervised	 approach	 also	 contributes	 to	 the	

creation	of	high-quality	synthetic	 labels	to	solve	the	challenges	with	minimal	 labeled	
data.	We	have	also	 found	that	 the	custom	batch-loader	yielding	2-4	 true	samples	 for	
every	100	synthetic	samples	helps	the	fine-tuning	process	with	the	limited	labeled	data	
and	 contributes	 to	 our	 understanding	 of	 optimizing	 the	 number	 of	 GS	 labeled-data	
required.	
Finally,	 our	 methodology	 contributes	 to	 the	 general	 architectures	 of	 NLP	 in	

effectively	 creating	 ML	 models	 using	 limited	 labeled	 domain	 data	 by	 leveraging	
techniques	of	domain	adaptation	and	document-level	context,	pre-trained	LM,	and	pre-
trained	WE.	Moreover,	adding	 the	character-level,	 text-based	 features	 to	 the	model’s	
encoder	and	confidence	scores	to	the	model’s	inference	would	further	strengthen	our	
results.	These	will	be	our	following	stage	tasks,	and	we	would	like	to	experiment	with	
them	and	publish	the	results	shortly.	
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8.	Appendices	

Appendix	A.	Dataset	Details	

Table	A1.	Showing	explicit	details	of	the	CDSS	dataset	throughout	the	pre-processing	steps	
Type	 Abstracts	Number	

Total	after	parsing	PubMed	XML	 3326	
HDE	Labeled	Set	1	(GS42)	 42	

ACM	Abstracts	[8]	
+	

HDE	Labeled	Set	2	(PMIDs	not	in	XML)	[4]	
8+4	=	12	

New	Total	with	Duplicates	
(Some	articles	from	GS42	are	in	Full	Text	XML)	 3380	

Abstracts	(<3	sentences	∼Little/No	Abstract)	 99	
New	Total	with	Duplicates	 3281	
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(After	removing	abstracts	with	<3	sentences)	 (1093	Train	+	2188	Test)	

HDE	Labeled	Set	2	(GS91)	
(ACM	8	+	PubMed	83)	 83	+	8	=	91	

Total	GS	 91	+	42	=	133	
Final	Total	

(Synthetic	Labeled	dataset)	
(After	removing	GS	133	from	Full	Dataset)	

3148	
(1049	Train	+	2099	Test)	

Appendix	B.	Metrics	for	Fine-tuning	on	GS	

Table	B1.	Fine-tune	with	GS	Labels	-	10	Experiments	
GS	 0	 2	 4	 6	 8	 10	 12	

Precision	 83.78	±	11.12	 86.43	±	5.78	 86.56	±	9.86	 84.32	±	4.99	 85.54	±	6.94	 84.35	±	9.92	 85.99	±	10.75	
Recall	 80.88	±	4.89	 82.41	±	7.85	 82.26	±	5.69	 82.28	±	2.21	 82.91	±	9.41	 81.80	±	15.32	 82.99	±	7.20	

Accuracy	 95.62	±	0.93	 96.21	±	0.51	 96.24	±	1.04	 95.65	±	0.58	 95.73	±	1.12	 95.88	±	0.56	 96.13	±	0.80	
F1-Score	 82.44	±	4.82	 83.66	±	3.79	 84.48	±	5.68	 83.14	±	2.05	 83.35	±	7.21	 82.81	±	4.38	 84.22	±	7.42	
Table	B2.	Fine-tune	with	GS	Labels	-	50	Experiments	
GS	 0	 2	 4	 6	 8	 10	 12	

Precision	 83.78	±	10.21	 86.27	±	8.28	 86.29	±	9.15	 85.30	±	8.01	 85.95	±	9.16	 85.91	±	8.70	 86.22	±	11.35	
Recall	 80.88	±	4.49	 83.16	±	8.14	 81.97	±	11.91	 82.53	±	6.66	 82.50	±	7.83	 82.45	±	11.26	 82.85	±	8.20	

Accuracy	 95.62	±	0.85	 96.24	±	0.74	 96.16	±	1.04	 95.92	±	0.72	 96.06	±	0.82	 96.08	±	0.87	 96.27	±	0.85	
F1-Score	 82.44	±	4.43	 84.65	±	5.42	 84.05	±	7.36	 83.65	±	4.54	 83.81	±	6.05	 83.91	±	6.61	 84.43	±	6.59	
Appendix	C.	Plots	for	Fine-tuning	on	GS	

	

Figure	C1.	Plot	evaluation	metrics	for	fine-tuning	with	GS	Labels	-	50	Experiments	
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Figure	C2.	Plot	evaluation	metrics	for	fine-tuning	with	GS	Labels	-	10	Experiments	
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