1,789 research outputs found
An effective theory of accelerated expansion
We work out an effective theory of accelerated expansion to describe general
phenomena of inflation and acceleration (dark energy) in the Universe. Our aim
is to determine from theoretical grounds, in a physically-motivated and model
independent way, which and how many (free) parameters are needed to broadly
capture the physics of a theory describing cosmic acceleration. Our goal is to
make as much as possible transparent the physical interpretation of the
parameters describing the expansion. We show that, at leading order, there are
five independent parameters, of which one can be constrained via general
relativity tests. The other four parameters need to be determined by observing
and measuring the cosmic expansion rate only, H(z). Therefore we suggest that
future cosmology surveys focus on obtaining an accurate as possible measurement
of to constrain the nature of accelerated expansion (dark energy and/or
inflation).Comment: In press; minor changes, results unchange
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies
Citation: Gil-Marin, H., Percival, W. J., Brownstein, J. R., Chuang, C. H., Grieb, J. N., Ho, S., . . . Zhao, G. B. (2016). The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies. Monthly Notices of the Royal Astronomical Society, 460(4), 4188-4209. doi:10.1093/mnras/stw1096We measure and analyse the clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) relative to the line of sight (LOS), for LOWZ and CMASS galaxy samples drawn from the final Data Release 12. The LOWZ sample contains 361 762 galaxies with an effective redshift of z(lowz) = 0.32, and the CMASS sample 777 202 galaxies with an effective redshift of z(cmass) = 0.57. From the power spectrum monopole and quadrupole moments around the LOS, we measure the growth of structure parameter f times the amplitude of dark matter density fluctuations sigma 8 by modelling the redshift-space distortion signal. When the geometrical Alcock-Paczynski effect is also constrained from the same data, we find joint constraints on f sigma(8), the product of the Hubble constant and the comoving sound horizon at the baryondrag epoch H(z) r(s)(z(d)), and the angular distance parameter divided by the sound horizon DA(z)/r(s)(zd). We find f(z(lowz)) sigma(8)(z(lowz)) = 0.394 +/- 0.062, D-A(zlowz)/r(s)(z(d)) = 6.35 +/- 0.19, H(z(lowz)) r(s)(z(d)) = (11.41 +/- 0.56) 103 km s(-1) for the LOWZ sample, and f( z(cmass)) sigma 8(z(cmass)) = 0.444 +/- 0.038, D-A(z(cmass))/r(s)(z(d)) = 9.42 +/- 0.15, H(z(cmass)) r(s)(z(d)) = (13.92 +/- 0.44) 103 km s-1 for the CMASS sample. We find general agreement with previous BOSS DR11 measurements. Assuming the Hubble parameter and angular distance parameter are fixed at fiducial +/- cold dark matter values, we find f( zlowz) sigma(8)( z(lowz))= 0.485 +/- 0.044 and f(z(cmass)) sigma(8)(z(cmass))= 0.436 +/- 0.022 for the LOWZ and CMASS samples, respectively
Impact of post-Born lensing on the CMB
Lensing of the CMB is affected by post-Born lensing, producing corrections to the convergence power spectrum and introducing field rotation. We show numerically that the lensing convergence power spectrum is affected at the lesssim 0.2% level on accessible scales, and that this correction and the field rotation are negligible for observations with arcminute beam and noise levels gsim 1 μK arcmin. The field rotation generates ~ 2.5% of the total lensing B-mode polarization amplitude (0.2% in power on small scales), but has a blue spectrum on large scales, making it highly subdominant to the convergence B modes on scales where they are a source of confusion for the signal from primordial gravitational waves. Since the post-Born signal is non-linear, it also generates a bispectrum with the convergence. We show that the post-Born contributions to the bispectrum substantially change the shape predicted from large-scale structure non-linearities alone, and hence must be included to estimate the expected total signal and impact of bispectrum biases on CMB lensing reconstruction quadratic estimators and other observables. The field-rotation power spectrum only becomes potentially detectable for noise levels Lt 1 μK arcmin, but its bispectrum with the convergence may be observable at ~ 3σ with Stage IV observations. Rotation-induced and convergence-induced B modes are slightly correlated by the bispectrum, and the bispectrum also produces additional contributions to the lensed BB power spectrum
Mutation of Archaeal Isopentenyl Phosphate Kinase Highlights Mechanism and Guides Phosphorylation of Additional Isoprenoid Monophosphates
I sopentenyl diphosphate (IPP) and its isomeric part-ner dimethylallyl diphosphate (DMAPP) are precur-sors for a diverse collection of primary and second-ary isoprenoid metabolites in all organisms. Following its formation, successive units of IPP are used together either with DMAPP, formed by the action of types I or II IPP isomerases, or with the IPP extended isoprenoid diphosphate chain, to biosynthesize C10, C15, or C20 oligoprenyl diphosphates known as geranyl diphos-phate (GPP), farnesyl diphosphate (FPP), and gera-nylgeranyl diphosphate (GGPP), respectively, as well as larger isoprenoid diphosphates. In plants and some mi-croorganisms, GPP, FPP, and GGPP also serve as start-ingmaterials for the biosynthesis of a large class of spe-cialized and often cyclic terpene hydrocarbons (1). FPP is the most ubiquitous of the three isoprenoid diphos-phate building blocks, as it resides at the juncture of bi
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the Fourier space wedges of the final sample
Citation: Grieb, J. N., Sanchez, A. G., Salazar-Albornoz, S., Scoccimarro, R., Crocce, M., Dalla Vecchia, C., . . . Zhao, G. B. (2017). The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the Fourier space wedges of the final sample. Monthly Notices of the Royal Astronomical Society, 467(2), 2085-2112. doi:10.1093/mnras/stw3384We extract cosmological information from the anisotropic power-spectrummeasurements from the recently completed Baryon Oscillation Spectroscopic Survey (BOSS), extending the concept of clustering wedges to Fourier space. Making use of new fast-Fourier-transform-based estimators, we measure the power-spectrum clustering wedges of the BOSS sample by filtering out the information of Legendre multipoles l > 4. Our modelling of these measurements is based on novel approaches to describe non-linear evolution, bias and redshift-space distortions, which we test using synthetic catalogues based on large-volume N-body simulations. We are able to include smaller scales than in previous analyses, resulting in tighter cosmological constraints. Using three overlapping redshift bins, we measure the angular-diameter distance, the Hubble parameter and the cosmic growth rate, and explore the cosmological implications of our full-shape clustering measurements in combination with cosmic microwave background and Type Ia supernova data. Assuming a Lambda cold dark matter (Lambda CDM) cosmology, we constrain the matter density to Omega M = 0.311(-0.010)(+ 0.009) and the Hubble parameter to H-0 = 67.6(-0.6)(+0.7) km s(-1) Mpc(-1), at a confidence level of 68 per cent. We also allow for nonstandard dark energy models and modifications of the growth rate, finding good agreement with the Lambda CDM paradigm. For example, we constrain the equation-of-state parameter to omega =-1.019(-0.039)(+0.048) . This paper is part of a set that analyses the final galaxy-clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS
Inclusive Dielectron Production in Ar+KCl Collisions at 1.76 AGeV studied with HADES
Results of the HADES measurement of inclusive dielectron production in Ar+KCl
collisions at a kinetic beam energy of 1.76 AGeV are presented. For the first
time, high mass resolution spectroscopy was performed. The invariant mass
spectrum of dielectrons is compared with predictions of UrQMD and HSD transport
codes.Comment: 4 pages, 3 figures - To appear in the conference proceedings for
Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse
Future perspectives at SIS-100 with HADES-at-FAIR
Currently, the HADES spectrometer undergoes un upgrade program to be prepared
for measurements at the upcoming SIS-100 synchrotron at FAIR. We describe the
current status of the HADES di-electron measurements at the SIS-18 and our
future plans for SIS-100.Comment: Invited contribution presented at the XLVII International Winter
Meeting on Nuclear Physics, Bormio (Italy), Jan. 26-30, 200
Matter bispectrum in cubic Galileon cosmologies
In this paper we obtain the bispectrum of dark matter density perturbations in
the frame of covariant cubic Galileon theories. This result is obtained by means of a semi-
analytic approach to second-order perturbations in Galileon cosmologies, assuming Gaussian
initial conditions. In particular, we show that, even in the presence of large deviations of the
linear growth-rate w.r.t. the CDM one, at the bispectrum level such deviations are reduced
to a few percent.Web of Scienc
A Novel fry1 Allele Reveals the Existence of a Mutant Phenotype Unrelated to 5′->3′ Exoribonuclease (XRN) Activities in Arabidopsis thaliana Roots
International audienceBackgroundMutations in the FRY1/SAL1 Arabidopsis locus are highly pleiotropic, affecting drought tolerance, leaf shape and root growth. FRY1 encodes a nucleotide phosphatase that in vitro has inositol polyphosphate 1-phosphatase and 3′,(2′),5′-bisphosphate nucleotide phosphatase activities. It is not clear which activity mediates each of the diverse biological functions of FRY1 in planta.Principal FindingsA fry1 mutant was identified in a genetic screen for Arabidopsis mutants deregulated in the expression of Pi High affinity Transporter 1;4 (PHT1;4). Histological analysis revealed that, in roots, FRY1 expression was restricted to the stele and meristems. The fry1 mutant displayed an altered root architecture phenotype and an increased drought tolerance. All of the phenotypes analyzed were complemented with the AHL gene encoding a protein that converts 3′-polyadenosine 5′-phosphate (PAP) into AMP and Pi. PAP is known to inhibit exoribonucleases (XRN) in vitro. Accordingly, an xrn triple mutant with mutations in all three XRNs shared the fry1 drought tolerance and root architecture phenotypes. Interestingly these two traits were also complemented by grafting, revealing that drought tolerance was primarily conferred by the rosette and that the root architecture can be complemented by long-distance regulation derived from leaves. By contrast, PHT1 expression was not altered in xrn mutants or in grafting experiments. Thus, PHT1 up-regulation probably resulted from a local depletion of Pi in the fry1 stele. This hypothesis is supported by the identification of other genes modulated by Pi deficiency in the stele, which are found induced in a fry1 background.Conclusions/SignificanceOur results indicate that the 3′,(2′),5′-bisphosphate nucleotide phosphatase activity of FRY1 is involved in long-distance as well as local regulatory activities in roots. The local up-regulation of PHT1 genes transcription in roots likely results from local depletion of Pi and is independent of the XRNs.
- …