22 research outputs found
Evidence for widespread hydrated minerals on asteroid (101955) Bennu
Early spectral data from the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission reveal evidence for abundant hydrated minerals on the surface of near-Earth asteroid (101955) Bennu in the form of a near-infrared absorption near 2.7 µm and thermal infrared spectral features that are most similar to those of aqueously altered CM-type carbonaceous chondrites. We observe these spectral features across the surface of Bennu, and there is no evidence of substantial rotational variability at the spatial scales of tens to hundreds of metres observed to date. In the visible and near-infrared (0.4 to 2.4 µm) Bennu’s spectrum appears featureless and with a blue (negative) slope, confirming previous ground-based observations. Bennu may represent a class of objects that could have brought volatiles and organic chemistry to Earth
The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements
The top-shaped morphology characteristic of asteroid (101955) Bennu, often found among fast-spinning asteroids and binary asteroid primaries, may have contributed substantially to binary asteroid formation. Yet a detailed geophysical analysis of this morphology for a fast-spinning asteroid has not been possible prior to the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission. Combining the measured Bennu mass and shape obtained during the Preliminary Survey phase of the OSIRIS-REx mission, we find a notable transition in Bennu’s surface slopes within its rotational Roche lobe, defined as the region where material is energetically trapped to the surface. As the intersection of the rotational Roche lobe with Bennu’s surface has been most recently migrating towards its equator (given Bennu’s increasing spin rate), we infer that Bennu’s surface slopes have been changing across its surface within the last million years. We also find evidence for substantial density heterogeneity within this body, suggesting that its interior is a mixture of voids and boulders. The presence of such heterogeneity and Bennu’s top shape are consistent with spin-induced failure at some point in its past, although the manner of its failure cannot yet be determined. Future measurements by the OSIRIS-REx spacecraft will provide insight into and may resolve questions regarding the formation and evolution of Bennu’s top-shape morphology and its link to the formation of binary asteroids
Properties of Rubble-Pile Asteroid (101955) Bennu from OSIRIS-REx Imaging and Thermal Analysis
Establishing the abundance and physical properties of regolith and boulders on asteroids is crucial for understanding the formation and degradation mechanisms at work on their surfaces. Using images and thermal data from NASA's Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft, we show that asteroid (101955) Bennu's surface is globally rough, dense with boulders, and low in albedo. The number of boulders is surprising given Bennu's moderate thermal inertia, suggesting that simple models linking thermal inertia to particle size do not adequately capture the complexity relating these properties. At the same time, we find evidence for a wide range of particle sizes with distinct albedo characteristics. Our findings imply that ages of Bennu's surface particles span from the disruption of the asteroid's parent body (boulders) to recent in situ production (micrometre-scale particles)
Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures
Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
Pargasite-bearing vein in spinel lherzolite from the mantle lithosphere of the North America Cordillera
Basanite lavas near Craven Lake, British Columbia, host a spinel lherzolite xenolith containing cross-cutting veins with pargasitic amphibole (plus minor apatite). The occurrence of vein amphibole in spinel lherzolite is singular for the Canadian Cordillera. The vein crosscuts foliated peridotite and is itself cut by the basanite host. The amphibole is pargasite, which is the most common amphibole composition in mantle peridotite. Rare earth element concentrations in the pargasite are similar to those for mafic alkaline rocks across the northern Cordilleran volcanic province (light rare earth elements ∼50× chondrite and heavy rare earth elements ∼5× chondrite). Two-pyroxene geothermometry suggests that the vein and host peridotite were thermally equilibrated prior to sampling by the basanite magma. Calculated temperature conditions for the sample, assuming equilibration along a model steady-state geotherm, are between 990 and 1050 °C and correspond to a pressure of 0.15 GPa (∼52 ± 2 km depth). These conditions are consistent with the stability limits of mantle pargasite in the presence of a fluid having XH2O < ∼0.1. The pargasite vein and associated apatite provide direct evidence for postaccretion fracture infiltration of CO2–F–H2O-bearing silicate fluids into the Cordilleran mantle lithosphere. Pargasite with low aH2O is in equilibrium with parts per million concentrations of H2O in mantle olivine, potentially lowering the mechanical strength of the lithospheric mantle underlying the Cordillera and making it more susceptible to processes such as lithospheric delamination. Remelting of Cordilleran mantle lithosphere containing amphibole veins may be involved in the formation of sporadic nephelinite found in the Canadian Cordillera.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
Corrigendum: Geothermobarometry of spinel peridotites from southern British Columbia: implications for the thermal conditions in the upper mantle
No abstractThe accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
Recommended from our members
Ground penetrating radar observations of subsurface structures in the floor of Jezero crater, Mars
The Radar Imager for Mars Subsurface Experiment instrument has conducted the first rover-mounted ground-penetrating radar survey of the Martian subsurface. A continuous radar image acquired over the Perseverance rover's initial ~3-kilometer traverse reveals electromagnetic properties and bedrock stratigraphy of the Jezero crater floor to depths of ~15 meters below the surface. The radar image reveals the presence of ubiquitous strongly reflecting layered sequences that dip downward at angles of up to 15 degrees from horizontal in directions normal to the curvilinear boundary of and away from the exposed section of the Séitah formation. The observed slopes, thicknesses, and internal morphology of the inclined stratigraphic sections can be interpreted either as magmatic layering formed in a differentiated igneous body or as sedimentary layering commonly formed in aqueous environments on Earth. The discovery of buried structures on the Jezero crater floor is potentially compatible with a history of igneous activity and a history of multiple aqueous episodes.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]