110 research outputs found

    Ocean Acidification Through the Lens of Ecological Theory

    Get PDF
    Ocean acidification, chemical changes to the carbonate system of seawater, is emerging as a key environmental challenge accompanying global warming and other human-induced perturbations. Considerable research seeks to define the scope and character of potential outcomes from this phenomenon, but a crucial impediment persists. Ecological theory, despite its power and utility, has been only peripherally applied to the problem. Here we sketch in broad strokes several areas where fundamental principles of ecology have the capacity to generate insight into ocean acidification’s consequences. We focus on conceptual models that, when considered in the context of acidification, yield explicit predictions regarding a spectrum of population- and community-level effects, from narrowing of species ranges and shifts in patterns of demographic connectivity, to modified consumer–resource relationships, to ascendance of weedy taxa and loss of species diversity. Although our coverage represents only a small fraction of the breadth of possible insights achievable from the application of theory, our hope is that this initial foray will spur expanded efforts to blend experiments with theoretical approaches. The result promises to be a deeper and more nuanced understanding of ocean acidification and the ecological changes it portends. Republished with permission from 96 Ecology 3 (2015)

    Barriers to Flow: The Effects of Experimental Cage Structures on Water Velocities in High-energy Subtidal and Intertidal Environments

    Get PDF
    For decades, marine ecologists have used cages as biological enclosure or exclosure devices to manipulate movement, growth, and survival of organisms. The ability to control the densities of focal organisms makes these structures a powerful tool. However, cages can often produce artifacts that influence the outcome of experiments. Although a subset of these artifacts have been examined previously, the effects of cages on water motion have not been adequately addressed from a quantitative standpoint, especially in high-flow environments. We targeted this data gap by explicitly measuring the fractional degree of velocity reduction inside a variety of experimental cage structures across flow conditions spanning those typical of wave-swept shallow subtidal and intertidal zones. Cages decreased velocities inside by up to 47% and reduced high-energy impact forces by more than 40%. Associated cage controls, employed to mimic physical effects of cages without interfering with organism movement, often had effects on water flow similar to those of cages. However, the nearly half an order of magnitude change in velocities inside cages and their controls reveals the need to be vigilant in considering potential artifacts, especially those tied to secondary biological interactions. These artifacts may be reduced by maximizing mesh size, employing large plot sizes and low profile structures, using cage controls that best mimic effects of the full cage, and monitoring cage controls to avoid the establishment of high-density “consumer hotels” within them. Using such approaches, researchers can minimize experimental biases and simplify the explanation of experimental results

    Ocean change within shoreline communities: from biomechanics to behaviour and beyond

    Get PDF
    Humans are changing the physical properties of Earth. In marine systems, elevated carbon dioxide concentrations are driving notable shifts in temperature and seawater chemistry. Here, we consider consequences of such perturbations for organism biomechanics and linkages amongst species within communities.In particular,we examine case examples of altered morphologies and material properties, disrupted consumer–prey behaviours, and the potential for modulated positive (i.e. facilitative) interactions amongst taxa, as incurred through increasing ocean acidity and rising temperatures. We focus on intertidal rocky shores of temperate seas as model systems, acknowledging the longstanding role of these communities in deciphering ecological principles. Our survey illustrates the broad capacity for biomechanical and behavioural shifts in organisms to influence the ecology of a transforming worl

    Ocean acidification research in the \u27post-genomic\u27 era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus

    Get PDF
    © 2015 Elsevier Inc. Advances in nucleic acid sequencing technology are removing obstacles that historically prevented use of genomics within ocean change biology. As one of the first marine calcifiers to have its genome sequenced, purple sea urchins (Strongylocentrotus purpuratus) have been the subject of early research exploring genomic responses to ocean acidification, work that points to future experiments and illustrates the value of expanding genomic resources to other marine organisms in this new \u27post-genomic\u27 era. This review presents case studies of S. purpuratus demonstrating the ability of genomic experiments to address major knowledge gaps within ocean acidification. Ocean acidification research has focused largely on species vulnerability, and studies exploring mechanistic bases of tolerance toward low pH seawater are comparatively few. Transcriptomic responses to high pCO2 seawater in a population of urchins already encountering low pH conditions have cast light on traits required for success in future oceans. Secondly, there is relatively little information on whether marine organisms possess the capacity to adapt to oceans progressively decreasing in pH. Genomics offers powerful methods to investigate evolutionary responses to ocean acidification and recent work in S. purpuratus has identified genes under selection in acidified seawater. Finally, relatively few ocean acidification experiments investigate how shifts in seawater pH combine with other environmental factors to influence organism performance. In S. purpuratus, transcriptomics has provided insight into physiological responses of urchins exposed simultaneously to warmer and more acidic seawater. Collectively, these data support that similar breakthroughs will occur as genomic resources are developed for other marine species

    Mechanisms of a coniferous woodland persistence under drought and heat

    Get PDF
    Predictions of warmer droughts causing increasing forest mortality are becoming abundant, yet few studies have investigated the mechanisms of forest persistence. To examine the resistance of forests to warmer droughts, we used a five-year precipitation reduction (~45% removal), heat (+4 °C above ambient) and combined drought and heat experiment in an isolated stand of mature Pinus edulis-Juniperus monosperma. Despite severe experimental drought and heating, no trees died, and we observed only minor evidence of hydraulic failure or carbon starvation. Two mechanisms promoting survival were supported. First, access to bedrock water, or 'hydraulic refugia' aided trees in their resistance to the experimental conditions. Second, the isolation of this stand amongst a landscape of dead trees precluded ingress by Ips confusus, frequently the ultimate biotic mortality agent of piñon. These combined abiotic and biotic landscape-scale processes can moderate the impacts of future droughts on tree mortality by enabling tree avoidance of hydraulic failure, carbon starvation, and exposure to attacking abiotic agents.This project was supported by the Department of Energy, Office of Science, and Pacific Northwest National Lab’s LDRD program. DDB participation was supported via NSF EF-1340624; EF-1550756, and EAR-1331408, DEB-1824796 and DEB-1833502. CG was supported by a Director’s Fellowship from the Los Alamos National Laboratory and by the Swiss National Science Foundation SNF (PZ00P3_174068). AV was supported by a fellowship from Generalitat Valenciana (BEST/2016/289) and the project Survive-2 (CGL2015-69773-C2-2-P MINECO/FEDER) from the Spanish Government. DSM was supported via NSF IOS-1450679, IOS-1444571, and IOS-1547796

    Especiação e seus mecanismos: histórico conceitual e avanços recentes

    Full text link

    Ocean acidification through the lens of ecological theory.

    No full text
    • 

    corecore