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Abstract 

 For decades, marine ecologists have used cages as biological enclosure or 

exclosure devices to manipulate movement, growth, and survival of organisms. The 

ability to control the densities of focal organisms makes these structures a powerful tool. 

However, cages can often produce artifacts that influence the outcome of experiments. 

Although a subset of these artifacts have been examined previously, the effects of cages 

on water motion have not been adequately addressed from a quantitative standpoint, 

especially in high-flow environments. We targeted this data gap by explicitly measuring 

the fractional degree of velocity reduction inside a variety of experimental cage structures 

across flow conditions spanning those typical of wave-swept shallow subtidal and 
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intertidal zones. Cages decreased velocities inside by up to 47% and reduced high-energy 

impact forces by more than 40%. Associated cage controls, employed to mimic physical 

effects of cages without interfering with organism movement, often had effects on water 

flow similar to those of cages. However, the nearly half an order of magnitude change in 

velocities inside cages and their controls reveals the need to be vigilant in considering 

potential artifacts, especially those tied to secondary biological interactions. These 

artifacts may be reduced by maximizing mesh size, employing large plot sizes and low 

profile structures, using cage controls that best mimic effects of the full cage, and 

monitoring cage controls to avoid the establishment of high-density “consumer hotels” 

within them. Using such approaches, researchers can minimize experimental biases and 

simplify the explanation of experimental results.   

 

Keywords: intertidal zone, subtidal zone, cage effects, artifacts, water flow, waves, 

velocity, impact force  

  

Introduction 

Cages have been used for decades in ecological field experiments on rocky 

intertidal shores and in shallow subtidal habitats. Their primary purpose is usually to 

manipulate the presence, absence, or densities of mobile predators and grazers, typically 

with the goal of evaluating biological interactions (e.g., Connell, 1961a; 1961b; 1970; 

Dayton, 1971; Haven, 1973; Menge, 1976; Hall, et al., 1990; Navarrete, 1996; Berlow, 

1997; Hindell, et al., 2001; Tomanek and Sanford, 2003; Bertness, et al., 2004; Menge, et 

al., 2004).  
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As is well recognized, however, experimental artifacts can be induced by the 

presence of a cage or similar structure. Cages often reduce water flow, decrease solar 

insolation, retard air movement, and potentially change behavior of organisms (Connell, 

1974; Virnstein, 1978; Dayton and Oliver, 1980; Hall, et al., 1990). Good experimental 

design therefore dictates that procedures be employed to gauge the effect of the 

experimental protocol itself on the outcome of the experiment (Underwood, 1997; Quinn 

and Keough, 2002). For this reason, cage controls are normally deployed alongside 

treatment cages, accompanying unmanipulated control plots. The assumption is that the 

cage controls appropriately mimic the physical effects of the cage without providing a 

barrier to the movement of mobile organisms. While a cage typically consists of a four-

sided structure with or without a top (a "full cage" or a "fence," respectively), cage 

controls are often configured as incomplete fences (i.e., with gaps or missing sides) or as 

“roofs” (mesh tops with at least one open side).  

Effects of cages and cage controls on light levels and temperature have been 

addressed and directly measured by several researchers, and are often predictable if the 

topography of the site is considered in the context of solar angles (e.g., Connell, 1974; 

Paine, 1977; Dayton and Oliver, 1980; Hayworth and Quinn, 1990; Tomanek and 

Sanford, 2003). However, the effects of cage structures on water flow, while recognized 

(e.g., Connell, 1974; Dayton and Oliver, 1980; Leber, 1985; Keuskamp, 2004) have been 

studied primarily only in a qualitative fashion, especially in energetic flow environments. 

Such qualitative observations suggest increased rates of sedimentation due to reduced 

flow, especially in soft-bottom benthic studies (Virnstein, 1977, 1978; Peterson, 1979; 

Dayton and Oliver, 1980; Hulberg and Oliver, 1980; Olafsson, et al., 1994; but see 
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Como, et al., 2006 and Reise, 1985), effects on settlement and feeding of benthic animals 

(Schmidt and Warner, 1984), and lower risks of dislodgement for enclosed organisms 

(van Katwijk and Hermus, 2002).  

 Clearly, it is possible for experimental structures to alter the pattern and intensity 

of flow over experimental plots. Thus, cage controls are vital for elucidating artifacts 

created by the presence of experimental structures. However, it is possible for artifacts to 

arise even in cases where cage controls exactly mimic the flow effects of a cage. If 

velocities are identical between the two treatments, but retarded relative to the outside 

flow, and if a cage-excluded predator or grazer prefers regions of reduced flow, 

consumers may move into the cage control and remain at higher than natural densities 

(Strasser, 2002). In this situation, although the flow effects of the cage are correctly 

modeled by the cage control, higher consumer densities relative to unmanipulated plots 

indicates that biological interactions may be misrepresented.    

 Artifacts associated both with cages and cage controls are likely to become 

enhanced as the degree of flow disruption by cages increases. Such issues are most 

relevant in environments where water motion has large effects, such as in regions 

characterized by rapid wave-driven flows that act as major agents of disturbance (Sousa, 

2001). Our goal in the present study, therefore, is to directly evaluate the effects of cage 

structures on the rapid flows typical of shallow subtidal and wave-swept intertidal zones. 

Using a variety of cage sizes and designs, we measure velocities and flow forces imposed 

on standard objects inside and outside of cages and cage controls. We address three 

primary questions: 1) What is the degree of flow attenuation in experimental cages with 

different sized mesh, 2) are full cages, fences, and roofs likely to alter flow in their 
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interiors in predictably different ways, and 3) do cages of various designs function 

differently in subtidal and intertidal flow regimes?  Our findings, while not 

comprehensive, provide quantitative evidence of the extent to which cage structures act 

as imperfect solid bodies, an effect that causes deflection of flow around them and 

produces measurable reductions in flow even with large mesh sizes. The potential effects 

of this velocity reduction on the organisms enclosed within cage structures are discussed 

in the context of ecological field manipulations.  

 

Materials and methods 

Cages used in these experiments represent several variations on the standard wire 

mesh cage employed by generations of researchers. Stainless steel wire mesh, either 

woven or welded, is available from a variety of industrial suppliers, and allows 

researchers to construct robust, long-lasting structures that can withstand harsh field 

conditions with minimal maintenance. The most common mesh has square openings and 

is sold in terms of the size of the opening (or openings per inch in the U.S.). Our meshes 

had wire diameters of 1.2 mm and openings with nominal widths of 23 mm, 11.5 mm, 7 

mm, 5 mm, and 3 mm (corresponding to 1, 2, 3, 4, and 6 openings per inch respectively). 

The percentage of mesh area that is open to flow is 85% for 23 mm mesh, 82% for 11.5 

mm mesh, 74% for 7 mm mesh, 66% for 5 mm mesh, and 52% for 3 mm mesh.  

We constructed several cage structures using the five sizes of mesh. "Full cages" 

were structures with four mesh sides and a mesh top, which effectively enclose organisms 

inside and prevent entry or exit of animals larger than the mesh dimensions. "Fences" had 

four mesh sides, but no top, enabling organisms to enter or exit through the top of the 
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structure, but preventing their movement along the substrate through the mesh sides. 

“Roofs” had two opposing mesh sides and a mesh top. The remaining two sides of the 

roof structure were open, allowing free exchange of organisms, either by crawling along 

the substrate or swimming, as well as unrestricted water flow through the open sides. Due 

to experimental limitations, not every mesh-size and cage-style combination was tested in 

every situation. 

 

Subtidal measurements of cage effects on flow 

The effects of full cages, fences, and roofs on flows in their interior were 

examined beneath non-breaking waves in subtidal locations in the field on November 9, 

2004 and June 20, 2005. On each measurement date, cage structures were fixed to the 

housing of a three-axis drag-sphere flow probe (constructed following the general design 

of Gaylord, 1999; 2000) such that the cage structure enclosed the 2.54 cm diameter drag 

sphere. This apparatus was deployed in the shallow subtidal zone at a depth of 

approximately 2 m on a flat sandy region of seafloor. The base of the cage structure was 

carefully aligned flush against the substratum, with the sensing height of the drag sphere 

probe 3 cm above the seafloor, characteristic of elevations to which many invertebrates 

and macroalgae protrude. The voltage signal from the drag sphere probe was carried via 

cable to a boat moored 50 m away, where it was amplified, passed through an analog-to-

digital converter, and digitally sampled at 5 Hz for storage on a laptop computer. 

An acoustic Doppler velocimeter (ADV; Nortek USA) was concomitantly 

deployed to measure the three components of velocity outside the cage at the same height 

as the drag sphere, but at a location 40 cm away along a line parallel to the wave crests. 
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This configuration positioned the ADV away from the region where flow would be 

disrupted by the cage, but close enough to ensure spatial and temporal coherence of the 

incident velocity field. The ADV also measured pressure, enabling calculation of sea-

surface fluctuations associated with waves passing overhead. It recorded internally at a 

factory-fixed rate of 16 Hz.   

Each of the cage structures had footprints of 15 x 20 cm. They were oriented with 

the long axis of the structure facing into the direction of wave propagation. In the case of 

the roofs, the mesh sides faced into the waves. The cages and roofs were 10 cm tall, and 

the fences were 8 cm tall. For each cage structure deployed in the field, 6000 to 15,000 

velocity points were recorded, after which the structure was retrieved by divers and 

replaced with the next structure.  

The November experiment occurred on a day with exceptionally clear water.  As 

a consequence, the acoustic return signal for the ADV was weak and the velocity records 

exhibited sporadic spiking. A simple central difference algorithm was therefore applied 

during analysis to identify and remove all spurious points. This issue did not arise during 

the June experiment. To place the ADV and drag sphere records on a common time 

sequence, the 16 Hz ADV records were linearly interpolated onto the 5 Hz time points of 

the drag sphere probe. Both records were rotated into their principal coordinates and the 

drag sphere voltage signal was converted to velocity according to previously conducted 

laboratory calibrations. Velocities inside the cage structures, as measured by the drag 

sphere, were then regressed against the outside velocities measured by the ADV. Major 

Axis regression techniques were used due to the two instruments' comparable level of 

error (Sokal and Rohlf, 1995). 
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Laboratory experiments with unidirectional high flow speeds 

 The effects of cages on water flow at the higher velocities found in the intertidal 

zone were tested in the laboratory. The laboratory experiments used a gravity-driven 

water cannon to deliver a single shot of water to a drag element (a 2.54 cm diameter 

sphere with 2 mm roughness elements as in the subtidal experiments) attached to an 

electronic force transducer that could have a cage mounted over it. The resulting impact-

style flows produced by this apparatus resemble in broad strokes those associated with 

the initial impingement of breaking waves, shown by Gaylord (2000) to be responsible 

for many of the largest forces imposed on intertidal organisms. The water cannon 

consisted of a 10.1 cm (4 inch) diameter plastic plumbing pipe attached vertically to the 

side of a building (Fig. 1). The upper section of the pipe was filled with water that was 

held at an elevated position by means of a sliding valve, which obstructed the lower 

section of the pipe. This sliding valve could be rapidly opened (via a pneumatic cylinder) 

to allow the water to fall out of the upper section of pipe. Upon descending, a large-radius 

pipe elbow redirected the flow into a horizontal plane. An experimental test section was 

mounted at the end of the pipe elbow, together with mounts for the electronic force 

transducer and cage structures. By changing the height of the vertical pipe segments 

between the valve and elbow (from 0.8 m to 5.7 m), the speed of the water as it exited the 

pipe and impacted the cage structure and enclosed drag element could be adjusted.  

 The force transducer attached to the drag sphere employed four foil strain gages 

to measure the displacement of coupled, parallel cantilever beams in response to applied 

force. Because only the drag sphere protruded into the experimental test section, flow did 
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not interact with other portions of the force transducer (see inset, Fig. 1). Signals from the 

force transducer were amplified, digitally sampled by computer at 6,000 Hz, and filtered 

through a 20
th

 order Chebyshev II infinite-impulse response filter routine implemented 

using Matlab
®
 software. The filter removed noise occurring above a cutoff frequency of 

200 Hz without introducing changes in the amplitude or phase of the signal below that 

frequency. This cutoff frequency was well below the natural frequency of the transducer 

(660 Hz). The maximum voltage for each trial was then extracted from the data and 

converted to force based on prior calibrations of the transducer.  

 In presenting results from the water cannon tests, we report both hydrodynamic 

impact forces per se, as well as water velocities responsible for the impact events, since 

the latter aids in comparison to the subtidal findings. The velocity of water incident at the 

test section prior to entering a cage was calculated by treating the column of water in its 

ready position as a single body with its center of mass at a height H above the test 

section. The potential energy of this column of water, Hmg, is converted to kinetic 

energy, 2

2

1
mV  when the valve opens and the water falls, such that 

2

2

1
mVHmg       (1) 

where m is the mass of the water, g is the acceleration due to gravity, and V is the 

velocity of the water as it exits the end of the pipe and impinges on the test section. 

Equation 1 can be rearranged to solve for this velocity  

gHV 2       (2) 

The velocities calculated in this manner were validated using a high speed video camera 

to measure the distance traveled by fluid parcels in the working section between frames 
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and using a K-band radar gun (Stalker ATS) aimed at the water exiting the working 

section. The known water velocities were then linked to the impact-type forces imposed 

on the unobstructed drag sphere (i.e., without a cage structure in place) at each velocity 

by fitting a power curve to the plot of velocity, V, versus force, F: 

624.0043.3 FV        (3) 

This relationship (with force in Newtons and velocity in m s
-1

) was used in all subsequent 

analyses to calculate water velocity from the impact force acting on the drag sphere probe 

when it was located inside cage structures of varying designs. 

  Five mesh sizes and two cage styles (full cage and roof) were tested using the 

water cannon at each of four water speeds (5.1 m s
-1

, 6.8 m s
-1

, 10 m s
-1

, 11.6 m s
-1

), 

spanning flows common to intertidal regions of many wave-exposed rocky shores 

(Denny, et al., 2003; Helmuth and Denny, 2003). The structures were built to external 

dimensions of 10 cm on a side and a height of 3.8 cm; these dimensions are different 

from those of the subtidal cages but are also common for cages employed in ecological 

studies. The roof structures were arranged so that one of the mesh sides of the roof faced 

the oncoming water stream. Preliminary tests using the open side of the roof facing the 

oncoming water showed no effect on flow compared to the structure-absent condition, so 

this orientation was not tested further. In all other runs, each structure was tested 10 times 

at each water speed, and the average force resulting from those runs is presented here. 

ANOVA comparisons of the effect of mesh size and structure style were carried out using 

SYSTAT 8.0 software.  

  

Intertidal field experiment 
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 Intertidal field tests of cages and cage controls were conducted along the rocky 

shoreline at Hopkins Marine Station in Pacific Grove, California. A vertical rock wall on 

the most wave-exposed portion of the shore was drilled to mount a number of maximum 

force recorders (a.k.a. dynamometers) with 2.54 cm diameter drag spheres, each textured 

with 2 mm roughness elements (Denny and Wethey, 2001). 

 The maximum force recorders were deployed within cage structures bolted over 

them against the rock face. The cage structures were large enough to allow unrestricted 

movement of the drag sphere inside. Maximum force recorders were checked and reset 

during low tide when sea conditions allowed access to the site, as often as once per day, 

with an average time between checks of 3 days. Every site and treatment had at least 16 

force measurements, with a maximum of 27 for certain site/treatment combinations. The 

four structures were first set out in November, 2001, and measurements continued 

through March, 2003. The four structures were then set out at four new sites in March, 

2003, and measurements continued through July, 2003. During periods when a site did 

not have a cage structure installed, maximum wave forces were recorded at the same 

intervals as the sites with structures installed. These maximum forces were used as the 

control data for each site. Significant wave height was recorded every six hours at a site 

50 meters offshore of the intertidal site throughout the entire duration of the 

measurements using a Seabird SBE26 wave gauge, mounted at 10 m depth.  

 Three styles of field structures were deployed. We used two sizes of full cages 

constructed of 3-mm mesh: a “small cage” measuring 10 cm on a side, and a “big cage” 

measuring 15 cm on a side. A two-sided roof structure made of 5-mm mesh, measuring 

15 cm on a side, and a four-sided, open-topped fence structure constructed of 5-mm mesh 
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with 15 cm sides were also used. All structures were 5 cm tall except for the fence 

structure, which was 6.5 cm tall. Although these structures represent only a subset of the 

sizes and styles used in other portions of this study, the logistics of accessing the 

experimental site and making measurements precluded the use of more structures.  

Maximum force recordings for each site were analyzed separately due to 

differences in topography and wave exposure between sites. Time periods in which the 

waves were too small to exceed the baseline sensitivity of the maximum force recorder 

had zeroes substituted for the missing force measurement.  

 

Results 

Subtidal measurements of cage effects on flow 

 Wave conditions during the first subtidal field trial were characterized by a 

significant wave height of 0.37 m and a dominant wave period of 12 s. The significant 

wave height and dominant wave period were 0.46 m and 16 s, respectively, during the 

second field trial. These conditions produced velocities at the location of the sensors that 

ranged from near-zero to approximately 1.25 m s
-1

, oscillating bi-directionally along a 

cross-shore axis. There was no appreciable longer-term current during the field 

measurements. 

 The drag sphere probe and ADV recorded similar velocities in the absence of a 

cage structure. A linear regression between drag sphere and ADV velocities exhibited a 

slope of 0.98, not significantly different from 1.0 (Fig. 2a). This finding indicates that 

both instruments measured the same incident flow field. In contrast, velocities within full 

cages exposed to subtidal flows were significantly attenuated relative to velocities 
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outside, for all mesh sizes examined (Fig. 2b-2e). In the case of a 23-mm mesh, velocities 

inside a full cage were reduced to 88% of those outside. Flows inside a 3-mm full cage 

were reduced substantially, to 53% of those outside. The degree of velocity reduction was 

also nearly identical in full cage, fence and roof structures (Figs. 3, 4). The degree of flow 

attenuation for subtidal cages also appears to be linearly related to the percentage of open 

area in each of the meshes (Fig. 5). The relationship is not significantly different for the 

full cages, fences, and roofs (ANCOVA; F2,17 = 0.0007, p>0.05 for differences among 

slopes; F2,19 = 0.005, p>0.05 for differences among intercepts).   

 

Laboratory experiments with unidirectional high flow speeds 

Mesh size had a significant effect on forces measured under cages and roof 

treatments compared to control conditions at every water speed tested (Table 1). Tukey 

post-hoc tests of measured force within each water speed treatment show different mesh 

sizes created differing magnitudes of force reduction, with the largest mesh sizes 

resulting in the least attenuation of forces (~10-12%), and the smallest mesh sizes 

creating the greatest reduction in forces measured (~45%, Fig. 6). Analogously, velocities 

inside cages were reduced 15 to 34% compared to control conditions (Fig. 7). Although 

the values are not directly comparable with the subtidal data (Figs. 2, 3) due to 

differences in cage size and the nature of the impinging flow, the same pattern of 

increasing attenuation of velocities with decreasing mesh size holds. 

The results of the ANOVA test of structure style on impact force showed little 

difference between cages and roofs (Table 2). In half of the comparisons there was no 

significant effect of structure type (cage vs. roof). In the other half, there were significant 
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differences, but the absolute difference in magnitude was quite small (0.13 N ± 0.15) and 

may be of little real-world importance, especially compared to differences between the 

structure and no-structure situations (Fig. 6).  

 

Intertidal field experiment  

 The structures deployed in the intertidal zone had varying effects on water flow 

beneath them. ANCOVA analyses demonstrated that each structure had homogeneous 

slopes of the regression of force as a function of offshore wave height. In the test of the 

main treatment effect of the presence of a structure, each of the four structures had a 

significant effect on interior water flow during the March - July 2003 deployment but no 

significant effect during the November, 2001 - March, 2003, deployment (Fig. 8; Table 

3). The difference in results was not due to a difference in offshore wave heights between 

the two time periods (1-way ANOVA, F1,49 = 0.271, p=0.605).  

 

Discussion 

  

 Past research involving cages in the subtidal and intertidal zones has considered 

flow artifacts almost exclusively from a qualitative or correlative perspective, in fairly 

benign habitats only (i.e. measuring rates of sediment deposition, Hulberg and Oliver, 

1980; Woodin, 1981). Even the few studies that have actually measured flows within 

cages have done so in an extremely limited fashion (Lassig, 1982; Kennelly, 1991). Our 

experiments therefore provide a first targeted, laboratory and field evaluation and 
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comparison of flow effects inside cages spanning a spectrum of designs and mesh sizes, 

under the more severe flows conditions that characterize wave-swept shores.  

The quantitative measurements of our study demonstrate that water velocities 

within wire mesh structures can be dramatically reduced compared to surrounding free-

stream velocities. Smaller mesh sizes substantially reduce water velocities, cutting speeds 

in the subtidal zone by as much as 50%, reducing water speeds in the intertidal zone by 

15-34% and reducing impact forces in the intertidal zone by over 40%. However, data 

from the field-deployed maximum force recorders demonstrate that effects of cages are 

not entirely predictable. In the turbulent environment of wave-swept rocky shores, small-

scale topographical variation can cause local modulation of flow, which can limit 

predictability on a site-specific basis and may pose problems for the interpretation of 

studies in such areas (Gaylord, 2000; Denny, et al., 2003; Helmuth and Denny, 2003; 

Denny, et al., 2004).  

There can be substantial differences in flow attenuation inside various styles of 

structures. While full cages should have reasonably consistent effects across a variety of 

flow directions, the effects of a two-sided roof structure will be much less predictable by 

virtue of the design of the structure. Depending on whether the mesh or open side faces 

into flow, there could be no flow attenuation or a 10 to 30% reduction in water velocity. 

An a priori knowledge of the effect of the structure will therefore be difficult wherever 

flows are highly turbulent or variable in direction, such as on wave-swept shores (Denny, 

1985), especially given recently documented subtleties of oscillatory boundary layers 

(Lowe, et al., 2005).  However, at sites where there is a demonstrably uni-directional 

flow pattern (e.g., tidal channels), the researcher can orient these structures appropriately.  
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Aside from such inescapable issues of flow directionality, our results demonstrate 

that cages of various designs can function similarly in shallow subtidal and intertidal 

environments, with absolute magnitudes of structure-associated flow reductions varying 

linearly with the open fraction of the mesh. Even the largest mesh size (23 mm) has a 

significant effect. Thus, in the shallow subtidal zone, where measured velocities due to 

orbital wave motion often peak at around 1 m s
-1

, maximum velocity reductions of 20-30 

cm s
-1

 can arise inside a structure. Further up the shore, where velocities in the wave-

swept rocky intertidal zone reach 20 m s
-1

 (Denny, et al., 1985; Bell and Denny, 1994; 

Denny, 1995; Denny, et al., 2003), a 30% reduction (3 mm mesh) could reduce flows 

inside a cage by 6 m s
-1

 relative to those outside. 

The reduction in flow measured in the center of cage or fence structures may be 

magnified when organisms are just inside their edges. Although we have not measured 

the effect directly, the fluid dynamics literature gives us a useful analogy to this situation, 

based on the study of the effects of terrestrial windbreaks. When porous fences are set up 

to act as windbreaks, researchers observe a separation of air flow over the top of the 

fence, resulting in a “quiet zone” in the lee of the fence. This quiet zone of air extends 

from the fence line out to distances of 4 to 8 times the height of the fence (Heisler and 

Dewalle, 1988; McNaughton, 1988; Hipsey and Sivapalan, 2003). A similar effect likely 

occurs with water flowing through and over our experimental fences. When considering a 

full cage with a mesh roof, it is unclear whether the “quiet zone” established by the wall 

of the cage will attenuate in the same manner as in the open-topped fence example.  

 

Ecological effects of cages  
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 It remains the researcher's responsibility to determine if configuration (i.e., cage 

style) or habitat (i.e., subtidal or intertidal) will have important biological consequences 

for their particular study system, but there are certainly cases where cages could have 

consequences by providing a refuge from large wave forces (Miller, 1974; Menge, 1978, 

van Watwijk and Hermus, 2002; Denny, 1995; Trussell, 1997). While explicit tests of 

dislodgement rates are scarce in the literature, there are many anecdotal observations of 

cage structures altering densities of mobile consumers, including limpets and whelks 

(Navarrete, 1996), polychaetes and juvenile seastars (Berlow, 1997), small gastropods 

(Kennelly, 1983), and nemertean worms and opisthobranchs (Dayton, 1971). Cage 

structures can also reduce incidence rates of rapid flow and thereby change the amount of 

time available for foraging by organisms that run a greater risk of dislodgement while 

actively moving (Menge, 1974; Menge, 1976; Burrows and Hughes, 1989; Denny and 

Blanchette, 2000). In other situations, increased rates of sedimentation in cages can alter 

community structure (Virnstein, 1977; Hulberg and Oliver, 1980; Menge, et al., 1986). 

 

Cage controls  

 As alluded to in the Introduction, because cage controls alter flow but do not 

exclude mobile organisms, consumers can find refuge from high water velocities inside 

control structures (Strasser, 2002). This feature has the potential to lead to situations 

where the density of the consumer species is higher than in the natural control plots (and 

the caged plots from which it is excluded). Thus, even when a cage control functions as a 

good physical mimic for the effects of a full cage, it may simultaneously function as a 

poor biological control. Dayton and Oliver (1980) suggest that a proper cage control in 
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this situation might involve manually reducing densities of the excluded consumers in 

cage controls down to a level equal to the densities in natural control plots.  

Other types of control plots may have additional challenges. For example, the 

utility of pure roof structures (i.e., ones that are supported by posts and entirely lack 

sides; Connell, 1974; Navarrete, 1996; Berlow, 1997) as cage controls in high flow 

conditions is called into question by our results. While these roofs do recreate the light 

attenuation effects of a full cage, their ability to mimic the alteration of flow and 

desiccation inside a full cage is suspect. The elevated mesh roof may therefore create a 

third type of manipulation which will complicate the interpretation of the effects of the 

main experimental cage on the system.  

 

Conclusions and recommendations 

The data presented here demonstrate, as long suspected, that flow modifications created 

by cages could have substantial effects on some experimental systems. A reasonably 

conservative, quantitative estimate of the degree of velocity attenuation inside cages of 

given mesh size can be extracted from Fig. 3.  Although changes in flow conditions will 

not have consistent effects across all taxa and systems, requiring field ecologists to 

evaluate how results presented here may impact the outcome of their particular study, we 

can make some broad recommendations for minimizing cage artifacts.  

 1) Maximize the mesh size. Whereas a large 23 mm mesh opening reduces flows 

by 2% to 18%, a 3 mm mesh opening can reduce flow by 30% to 49% in high-flow 

conditions. When small mesh sizes are necessary to exclude smaller organisms, employ 

the precautions listed below. 
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 2) Design low-profile structures and maximize plot size, preferably using lateral 

dimensions that are at least 10 times the height to minimize edge effects. Consider shorter 

fences (in cases where the focus is on control of crawling organisms) rather than full 

cages to allow wave-driven flows to impinge unobstructed from above.     

3) If cage controls have open sides, orient them appropriately to mimic physical 

effects of full cages. Generally, the complete mesh sides should face into oncoming flow 

to create velocity reductions similar to those inside the full cage.  

 4) Monitor densities of mobile consumers in cage controls to avoid the “hotel” 

effect, where large numbers of consumers enter a cage control to seek shelter. It may be 

necessary to manipulate the density of consumers in cage controls to match densities in 

natural controls.  

 5) When possible, actually measure inside versus outside flow differences.  This 

approach may be critical for separating physical and biological effects in situations where 

flow rates are known to directly influence growth rates or other characteristics of 

organisms.  

 6) For older datasets, be wary of results that indicate differences between cage 

controls and both natural control plots and full cages. These trends could be the result of 

cage controls altering consumer densities by creating a unique microhabitat.  
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Table 1. ANOVA results for tests of mesh size on measured forces under cage structures in the laboratory 

water cannon. Each water velocity and structure type was tested separately, with five mesh sizes as the 

treatment levels. In each case, the wire structures reduced water velocities significantly compared to the 

control condition with no structure mounted over the force transducer.  

Structure 

Type 

Water speed 

m/s 
Source SS df MS F ratio p 

Full cage 5 
Mesh Size 

Error 
3.05 
0.13 

5 
54 

0.61 
0.002 

254.91 <0.001* 

Full cage 
6.8 

 

Mesh Size 

Error 

11.784 

1.230 

5 

54 

2.357 

0.023 
103.45 <0.001* 

Full cage 10 
Mesh Size 

Error 

33.14 

1.38 

5 

54 

6.63 

0.026 
259.65 <0.001* 

Full cage 11.6 
Mesh Size 

Error 

50.68 

1.80 

5 

54 

10.136 

0.033 
303.24 <0.001* 

Roof 5 
Mesh Size 

Error 
0.124 
0.006 

5 
54 

0.025 
0.000 

209.34 <0.001* 

Roof 
6.8 

 

Mesh Size 

Error 

12.707 

1.061 

5 

54 

2.541 

0.020 
129.394 <0.001* 

Roof 10 
Mesh Size 

Error 

24.808 

1.272 

5 

54 

4.962 

0.024 
210.678 <0.001* 

Roof 11.6 
Mesh Size 

Error 

37.646 

0.821 

5 

54 

7.529 

0.015 
495.153 <0.001* 
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Table 2 Effect of structure style (cage or roof) on measured force in water cannon. ANOVAs are carried 

out for each water speed and mesh size separately. Where a significant difference in measured force is 

found, the structure style that produced the lower measured forces is indicated in the “Lower measured 

forces” column. Non-significant treatments indicate that the structure style causes an approximately equal 

reduction in measured force.  

Water speed 

(m/s) 

Mesh 

Size 

(mm) 

Source df MS F-ratio p-value 

Lower 

measured 

forces 

5 23 Structure Style 

Error 

1 

18 

<0.001 

0.002 

0.188 0.670  

5 11.5 Structure Style 
Error 

1 
18 

0.002 
0.001 

1.295 0.270  

5 7 Structure Style 

Error 

1 

18 

0.006 

0.003 

2.328 0.144  

5 5 Structure Style 

Error 

1 

18 

0.032 

0.002 

17.508 0.001* Cage 

5 3 Structure Style 
Error 

1 
18 

0.032 
0.003 

12.270 0.003* Cage 

6.8 23 Structure Style 

Error 

1 

18 

0.472 

0.019 

25.237 <0.001* Roof 

6.8 11.5 Structure Style 

Error 

1 

18 

0.007 

0.012 

0.621 0.441  

6.8 7 Structure Style 
Error 

1 
18 

0.005 
0.009 

0.563 0.463  

6.8 5 Structure Style 

Error 

1 

18 

0.007 

0.013 

0.535 0.474  

6.8 3 Structure Style 

Error 

1 

18 

0.215 

0.015 

13.949 0.002* Roof 

10 23 Structure Style 
Error 

1 
18 

0.127 
0.024 

5.235 0.034* Cage 

10 11.5 Structure Style 

Error 

1 

18 

<0.001 

0.015 

0.026 0.873  

10 7 Structure Style 

Error 

1 

18 

<0.001 

0.018 

0.001 0.981  

10 5 Structure Style 
Error 

1 
18 

1.194 
0.025 

46.981 <0.001* Cage 

10 3 Structure Style 

Error 

1 

18 

0.264 

0.020 

13.132 0.002* Cage 

11.6 23 Structure Style 
Error 

1 
18 

<0.001 
0.030 

0.009 0.924  

11.6 11.5 Structure Style 

Error 

1 

18 

0.001 

0.017 

0.038 0.847  

11.6 7 Structure Style 

Error 

1 

18 

0.508 

0.032 

15.962 0.001* Cage 

11.6 5 Structure Style 
Error 

1 
18 

0.850 
0.018 

45.986 <0.001* Cage 

11.6 3 Structure Style 
Error 

1 
18 

0.322 
0.011 

29.212 <0.001* Cage 
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Table 3 ANCOVA results for comparison of wave forces measured in the field on maximum-force 

recording dynamometers with and without cage structures covering the site. The offshore significant wave 

height is used as a covariate, the test is for the main effect of the treatment, presence or absence of a cage 

structure. Significant effects of the presence of a structure on wave forces are denoted with an asterisk. 

Structure sizes and designs are described in the text. 

 

Structure 

Type 
Source SS df MS F-ratio p 

Small cage       

Site 1 Cage Presence/Absence 

Wave Height 

Error 

241.56 

817.42 

8450.73 

1 

1 

46 

241.56 

817.42 

183.71 

1.31 

4.44 

0.257 

0.04 

Site 2 Cage Presence/Absence 

Wave Height 

Error 

357.88 

2341.41 

2895.73 

1 

1 

42 

357.88 

23.41.41 

68.95 

5.19 

33.96 
0.028* 

<0.001 

Big cage       

Site 1 Cage Presence/Absence 

Wave Height 

Error 

20.47 

1566.41 

2401.12 

1 

1 

45 

20.47 

1566.41 

53.35 

0.384 

29.356 

0.539 

<0.001 

Site 2 Cage Presence/Absence 

Wave Height 

Error 

2211.78 

2334.44 

2151.72 

1 

1 

41 

2211.78 

2334.44 

52.48 

42.14 

44.48 
<0.001* 

<0.001 

 

Roof       

Site 1 Cage Presence/Absence 

Wave Height 
Error 

76.70 

1729.72 
2048.46 

1 

1 
46 

76.70 

1729.72 
44.53 

1.723 

38.84 

0.196 

<0.001 

Site 2 Cage Presence/Absence 

Wave Height 
Error 

1302.96 

3753.79 
6694.32 

1 

1 
42 

1302.96 

3753.79 
159.38 

8.175 

23.55 
0.007* 

<0.001 

Fence       

Site 1 Cage Presence/Absence 

Wave Height 
Error 

4.36 

1780.41 
2067.94 

1 

1 
37 

4.36 

1780.41 
55.89 

0.078 

31.856 

0.782 

<0.001 

Site 2 Cage Presence/Absence 

Wave Height 

Error 

2071.06 

2899.92 

4094.51 

1 

1 

42 

2071.06 

2899.92 

97.48 

21.24 

29.746 
<0.001* 

<0.001 
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Figure captions 

Figure 1. Schematic of the laboratory water cannon used for testing the effects of cages 

on water flow at high speeds. The operation of the water cannon is described in the text. 

The inset photograph shows water moving through and around a cage during the moment 

of impact. 

 

Figure 2. Example set of velocity measurements conducted in subtidal habitats, 

comparing flows inside and outside of full cages constructed from a range of mesh sizes. 

 

Figure 3.  Example set of velocity measurements conducted in subtidal habitats, 

comparing flows inside and outside of fence structures constructed from a range of mesh 

sizes. 

 

Figure 4.  Example set of velocity measurements conducted in subtidal habitats, 

comparing flows inside and outside of roof structures constructed from a range of mesh 

sizes. 

 

Figure 5. Slopes of the linear regressions of Figs. 2-4, versus the percentage of open area 

in the mesh used to construct the full cages, fences, and roofs.  Circles = full cages; 

triangles = fences; diamonds = roofs; crosses = no cage structure. 

 

Figure 6. Average forces measured with force transducer under wire mesh structures 

mounted in the laboratory water cannon. Control data had no structure mounted over the 
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transducer. Data are grouped by the free stream water velocity (5.1, 6.8, 10, 11.6 m s
-1

) 

and by structure type. Lines over bars indicate treatments which were not significantly 

different from each other as tested by an ANOVA and post-hoc Tukey test. All other bars 

are significantly different from each other (n=10, p<0.001) within one water speed. A) 

Cage treatment, structure has four mesh sides and a mesh top. B) Roof treatment, 

structure has two mesh sides and a mesh top. A mesh side faces the oncoming water flow. 

Error bars represent 95% confidence intervals. 

 

Figure 7. Water velocities inside of cage structures relative to velocities without a 

structure present, using the laboratory water cannon. Each structure was tested ten times 

at each speed. A) Full cages constructed of five mesh sizes. B) Roof structures 

constructed of five mesh sizes. The closed mesh side of the roof faced the oncoming 

flow. 

 

Figure 8. Forces measured by maximum-force recording dynamometers at two 

representative field sites. A fence with 5 mm mesh was placed around the dynamometer 

(closed circles) for several weeks, and control wave force data (open circles) were 

recorded at the same site for several weeks as well. At site 1 there was a significant effect 

of the presence of the fence on measured forces (ANCOVA with offshore wave height as 

the covariate, F1,42=21.24, p<0.001). At site 2, there was no significant difference 

between the measured wave forces during the two time periods. The same pattern of 

significant effects at one site and no significant effect at a second site held for each of the 

other three structures tested, and those data are not shown here.  
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7 

a. 

 
b. 
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Figure 8. 
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