43 research outputs found

    A comparative study on plant growth and root plasticity responses of two Brachiaria forage grasses grown in nutrient solution at low and high phosphorus supply

    Get PDF
    Brachiaria forage grasses are widely used for livestock production in the tropics. Signalgrass (Brachiaria decumbens cv. Basilisk, CIAT 606) is better adapted to low phosphorus (P) soils than ruzigrass (B. ruziziensis cv. Kennedy, CIAT 654), but the physiological basis of differences in low-P adaptation is unknown. We characterized morphological and physiological responses of signalgrass and ruzigrass to low P supply by growing both grasses for 30days in nutrient solution with two levels of P supply using the hydroxyapatite pouch system. Ruzigrass produced more biomass at both levels of P supply whilst signalgrass appears to be a slower-growing grass. Both grasses increased biomass allocation to roots and had higher root acid phosphatase and phytase activities at low P supply. At low P supply, ruzigrass showed greater morphological plasticity as its leaf mass density and lateral root fraction increased. For signalgrass, morphological traits that are not responsive to variation in P supply might confer long-term ecological advantages contributing to its superior field persistence: greater shoot tissue mass density (dry matter content) might lower nutrient requirements while maintenance of lateral root growth might be important for nutrient acquisition in patchy soils. Physiological plasticity in nutrient partitioning between root classes was also evident for signalgrass as main roots had higher nutrient concentrations at high P supply. Our results highlight the importance of analyzing morphological and physiological trait profiles and determining the role of phenotypic plasticity to characterize differences in low-P adaptation between Brachiaria genotype

    Low-P tolerance by maize (Zea mays L.) genotypes: Significance of root growth, and organic acids and acid phosphatase root exudation

    Get PDF
    We investigated some mechanisms, which allow maize genotypes to adapt to soils which are low in available P. Dry matter production, root/shoot-ratio, root length and root exudation of organic acids and acid phosphatase were investigated in four maize genotypes grown under P-deficient and P-sufficient conditions in sterile hydroponic culture. A low-P tolerant, an acid-tolerant and a low-P susceptible genotype of maize were compared with a Swiss commercial cultivar. The study found increased root development and increased exudation of acid phosphatase under P-deficient conditions in all maize genotypes, except for the Swiss cultivar. Effects on root formation and acid phosphatase were greater for the low-P tolerant than for the low-P susceptible, and the acid soil tolerant genotypes. Organic acid contents in root tissues were increased under P deficiency and related to increased PEPC activity. However, the increase in contents was associated with an increase in exudation for the low-P tolerant genotype only. The low-P susceptible genotype was characterized by high organic acid content in roots and low organic acid exudation. The organic acids content in the phloem exudates of shoots was related to root exudation under different P supply, to the difference between lines in organic acids root content, but not to the low-P tolerance or susceptibility of maize genotype

    Atributos morfológicos y fisiológicos de genotipos de brachiaria en un suelo con bajo fósforo disponible y alta saturación de aluminio

    Get PDF
    Se evaluaron en invernadero en un suelo de Matazul, Meta, Colombia durante 6 semanas, 2 genotipos de Brachiaria (uno mejor adaptado a bajo P, B. decumbens y otro menos adaptado, B. ruziziensis) y 8 progenies del cruzamiento entre ellos ( mejores adaptados: H-7, H-40, H-28, H-58; menos adaptados: H-190, H-94, H-82, H-179). Los genotipos mejor adaptados presentaron mayor biomasa aérea, explicada por mayor área foliar, mayor absorción de P en el tallo y mayor volumen de raíz. Las características morfológicas de las raíces, principalmente longitud, peso seco y contenido de P, permiteron mejor adaptación a bajo P disponible en el suelo. El periodo de evaluación fue suficiente para observar diferencias entre progenies

    Physicochemical space of synthetic and natural pesticides – a meta-analysis

    Get PDF
    The first commercial use of synthetic pesticides for crop protection dates back to the 1940s, followed by a fast spreading of their use and the development of a large number of compounds. In contrast to synthetic pesticides that are nowadays designed with the help of artificial intelligence that includes computational science and combinatorial chemistry, natural pesticides are the results of long evolutionary processes involving specific host-pathogens, predator-prey and competitor interactions. For these reasons, natural pesticides are often more specific and less harmful to the environment. Natural pesticides are very diverse and can be found in various living organisms. In the present study, we investigated differences in the physicochemical space occupied by synthetic and natural pesticides. In this respect, we measured the mean and breadth of synthetic and natural pesticides, as well as the overlap between these groups in a reduced physicochemical space derived from a set of 44 physicochemical variables. We showed that physicochemical space strongly differs between synthetic and natural pesticides and could be determined with 93-100% certainty, a result comparable to differences observed in drugs. Importantly, the physicochemical space occupied by synthetic pesticides was 2.6 fold smaller than the one of natural pesticides and toxicity potential was lower in the latter. In conclusion, our work showed that the design of commercialized synthetic pesticides is underexploiting the possible physicochemical space of known natural pesticides, likely due to specific constraints. Such limitations should trigger the development of efficient natural pesticides avoiding as much as possible detrimental effects on non-target organism

    Predation success by a plant-ant indirectly favours the growth and fitness of its host myrmecophyte

    Get PDF
    Mutualisms, or interactions between species that lead to net fitness benefits for each species involved, are stable and ubiquitous in nature mostly due to "byproduct benefits" stemming from the intrinsic traits of one partner that generate an indirect and positive outcome for the other. Here we verify if myrmecotrophy (where plants obtain nutrients from the refuse of their associated ants) can explain the stability of the tripartite association between the myrmecophyte Hirtella physophora, the ant Allomerus decemarticulatus and an Ascomycota fungus. The plant shelters and provides the ants with extrafloral nectar. The ants protect the plant from herbivores and integrate the fungus into the construction of a trap that they use to capture prey; they also provide the fungus and their host plant with nutrients. During a 9-month field study, we over-provisioned experimental ant colonies with insects, enhancing colony fitness (i.e., more winged females were produced). The rate of partial castration of the host plant, previously demonstrated, was not influenced by the experiment. Experimental plants showed higher δ¹⁵N values (confirming myrmecotrophy), plus enhanced vegetative growth (e.g., more leaves produced increased the possibility of lodging ants in leaf pouches) and fitness (i.e., more fruits produced and more flowers that matured into fruit). This study highlights the importance of myrmecotrophy on host plant fitness and the stability of ant-myrmecophyte mutualisms

    Hydrologie quantitative: Processus, modèles et aide à la décision

    No full text
    L’hydrologie, science du cycle continental de l’eau, est avant tout l’observation d’un milieu naturel complexe. Par une approche quantifiée elle a l’ambition de fournir un ensemble d’outils opérationnels utiles à l’ingénieur et au décideur,pour évaluer les ressources en eau et les risques associés (crue, sécheresse), anticiper grâce à la prévision en temps réel des événements dommageables et gérer au mieux les réserves hydrauliques.  Le texte principal est un fil conducteur qui propose une vision intégrée des phénomènes, des modèles et de leurs applications, en mettant l’action sur la compréhension de leurs conditions d’emploi et la confrontation de ces outils aux réalités de terrain. On y insiste en particulier sur des développements récents, comme la nonstationnarité des phénomènes. Il est complété par des annexes sur DVD qui approfondissent les méthodes, les illustrent par des exemples opérationnels présentés par les professionnels qui les ont mis en oeuvre et proposent des outils permettant de s’entraîner et de tester ces méthodes. Ce DVD représente à lui seul l’équivalent d’un second ouvrage de 850 pages…  Introduction méthodique à l’hydrologie quantitative à l’intention des étudiants, cet ouvrage s’adresse également aux professionnels expérimentés qui y trouveront un aperçu des développements scientifiques en cours et une très abondante bibliographie
    corecore