4,631 research outputs found

    BonFIRE: A multi-cloud test facility for internet of services experimentation

    Get PDF
    BonFIRE offers a Future Internet, multi-site, cloud testbed, targeted at the Internet of Services community, that supports large scale testing of applications, services and systems over multiple, geographically distributed, heterogeneous cloud testbeds. The aim of BonFIRE is to provide an infrastructure that gives experimenters the ability to control and monitor the execution of their experiments to a degree that is not found in traditional cloud facilities. The BonFIRE architecture has been designed to support key functionalities such as: resource management; monitoring of virtual and physical infrastructure metrics; elasticity; single document experiment descriptions; and scheduling. As for January 2012 BonFIRE release 2 is operational, supporting seven pilot experiments. Future releases will enhance the offering, including the interconnecting with networking facilities to provide access to routers, switches and bandwidth-on-demand systems. BonFIRE will be open for general use late 2012

    Mode-splitting in a microring resonator for self-referenced biosensing

    Get PDF
    Self-referenced biosensing based on mode-splitting on a microring resonator is experimentally demonstrated. A Bragg grating integrated on the surface of the ring provides coupling between the clockwise and counterclockwise travelling modes of the pristine ring resonator lifting their degeneracy. The amount of mode-splitting is directly related to the reflectivity of the grating and it is only affected by structurally modifying the grating. Environmental perturbations to the surroundings of the gratings, such as temperature and bulk refractive index variations, have a minor effect on the amount of mode-splitting. This principle allows the realization of a self-referenced sensing scheme based on the detection of variations of the mode-splitting induced by structural changes to the grating. In this work, a polymethyl methacrylate (PMMA) Bragg grating is integrated onto a ring resonator in Al2O3. It is shown both theoretically and experimentally that the amount of splitting of a resonance varies minimally under temperature or bulk refractive index perturbations. However, the structural change of attaching a layer of biomolecules inside the grating does affect its reflectivity and the amount of mode splitting present. This result represents the first proof-of-concept demonstration of an integrated mode-splitting biosensor insensitive to temperature and refractive index variations of the liquid matrix where the molecules to be detected are embedded. The reported results pave the road towards the realization of truly self-referenced biosensors

    Charged string solutions with dilaton and modulus fields

    Full text link
    We find charged, abelian, spherically symmetric solutions (in flat space-time) corresponding to the effective action of D=4D=4 heterotic string theory with scale-dependent dilaton \p and modulus \vp fields. We take into account perturbative (genus-one), moduli-dependent `threshold' corrections to the coupling function f(\p,\vp) in the gauge field kinetic term f(\p,\vp) F^2_{\m\n}, as well as non-perturbative scalar potential V(\p, \vp), e.g. induced by gaugino condensation in the hidden gauge sector. Stable, finite energy, electric solutions (corresponding to on abelian subgroup of a non-abelian gauge group) have the small scale region as the weak coupling region (\phi\ra -\infty) with the modulus \vp slowly varying towards smaller values. Stable, finite energy, abelian magnetic solutions exist only for a specific range of threshold correction parameters. At small scales they correspond to the strong coupling region (\p\ra \infty) and the compactification region (\vp\ra 0). The non-perturbative potential VV plays a crucial role at large scales, where it fixes the asymptotic values of ϕ\phi and \vp to be at the minimum of VV.Comment: 42 pages, 5 figures, harvmac, CERN-TH.6911/93, UPR-573-T (minor corrections in Section 6

    Impact of Simultaneous Exposure to Arboviruses on Infection and Transmission by Aedes aegypti Mosquitoes

    Get PDF
    The recent emergence of both chikungunya and Zika viruses in the Americas has significantly expanded their distribution and has thus increased the possibility that individuals may become infected by more than one Aedes aegypti-borne virus at a time. Recent clinical data support an increase in the frequency of coinfection in human patients, raising the likelihood that mosquitoes could be exposed to multiple arboviruses during one feeding episode. The impact of coinfection on the ability of relevant vector species to transmit any of these viruses (that is, their vector competence) has not been determined. Thus, we here expose Ae. aegypti mosquitoes to chikungunya, dengue-2 or Zika viruses, both individually and as double and triple infections. Our results show that these mosquitoes can be infected with and can transmit all combinations of these viruses simultaneously. Importantly, infection, dissemination and transmission rates in mosquitoes are only mildly affected by coinfection

    A mechanochemical model for auto-regulation of lung airway surface layer volume

    Get PDF
    We develop a proof-of-principle model for auto-regulation of water volume in the lung airway surface layer (ASL) by coupling biochemical kinetics, transient ASL volume, and homeostatic mechanical stresses. The model is based on the hypothesis that ASL volume is sensed through soluble mediators and phasic stresses generated by beating cilia and air drag forces. Model parameters are fit based on available data on human bronchial epithelial cell cultures. Simulations then demonstrate that homeostatic volume regulation is a natural consequence of the processes described. The model maintains ASL volume within a physiological range that modulates with phasic stress frequency and amplitude. Next, we show that the model successfully reproduces the responses of cell cultures to significant isotonic and hypotonic challenges, and to hypertonic saline, an effective therapy for mucus hydration in cystic fibrosis patients. These results compel an advanced airway hydration model with therapeutic value that will necessitate detailed kinetics of multiple molecular pathways, feedback to ASL viscoelasticity properties, and stress signaling from the ASL to the cilia and epithelial cells

    Hydroxamate production as a high affinity iron acquisition mechanism in Paracoccidioides Spp.

    Get PDF
    Iron is a micronutrient required by almost all living organisms, including fungi. Although this metal is abundant, its bioavailability is low either in aerobic environments or within mammalian hosts. As a consequence, pathogenic microorganisms evolved high affinity iron acquisition mechanisms which include the production and uptake of siderophores. Here we investigated the utilization of these molecules by species of the Paracoccidioides genus, the causative agents of a systemic mycosis. It was demonstrated that iron starvation induces the expression of Paracoccidioides ortholog genes for siderophore biosynthesis and transport. Reversed-phase HPLC analysis revealed that the fungus produces and secretes coprogen B, which generates dimerumic acid as a breakdown product. Ferricrocin and ferrichrome C were detected in Paracoccidioides as the intracellular produced siderophores. Moreover, the fungus is also able to grow in presence of siderophores as the only iron sources, demonstrating that beyond producing, Paracoccidioides is also able to utilize siderophores for growth, including the xenosiderophore ferrioxamine. Exposure to exogenous ferrioxamine and dimerumic acid increased fungus survival during co-cultivation with macrophages indicating that these molecules play a role during host-pathogen interaction. Furthermore, cross-feeding experiments revealed that Paracoccidioides siderophores promotes growth of Aspergillus nidulans strain unable to produce these iron chelators. Together, these data denote that synthesis and utilization of siderophores is a mechanism used by Paracoccidioides to surpass iron limitation. As iron paucity is found within the host, siderophore production may be related to fungus pathogenicity
    corecore