3,133 research outputs found

    Single-atom control of the optoelectronic response in sub-nanometric cavities

    Full text link
    By means of ab-initio time dependent density functional theory calculations carried out on an prototypical hybrid plasmonic device (two metallic nanoparticles bridged by a one-atom junction), we demonstrate the strong interplay between photoinduced excitation of localized surface plasmons and electron transport through the single atom. Such an interplay is remarkably sensitive to the atomic orbitals of the junction. Therefore, we show the possibility of a twofold tuning (plasmonic response and photoinduced current across the juntion) just by changing a single atom in the device.Comment: 5 pages, 5 figure

    Stochastic Hard-Sphere Dynamics for Hydrodynamics of Non-Ideal Fluids

    Get PDF
    A novel stochastic fluid model is proposed with non-ideal structure factor consistent with compressibility, and adjustable transport coefficients. This Stochastic Hard Sphere Dynamics (SHSD) algorithm is a modification of the Direct Simulation Monte Carlo (DSMC) algorithm and has several computational advantages over event-driven hard-sphere molecular dynamics. Surprisingly, SHSD results in an equation of state and pair correlation function identical to that of a deterministic Hamiltonian system of penetrable spheres interacting with linear core pair potentials. The fluctuating hydrodynamic behavior of the SHSD fluid is verified for the Brownian motion of a nano-particle suspended in a compressible solvent.Comment: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-401745). To appear in Phys. Rev. Lett. 200

    A chiral route to spontaneous entanglement generation

    Full text link
    We study the generation of spontaneous entanglement between two qubits chirally coupled to a waveguide. The maximum achievable concurrence is demonstrated to increase by a factor of 4/e∼1.54/e \sim 1.5 as compared to the non-chiral coupling situation. The proposed entanglement scheme is shown to be robust against variation of the qubit properties such as detuning and separation, which are critical in the non-chiral case. This result relaxes the restrictive requirements of the non-chiral situation, paving the way towards a realistic implementation. Our results demonstrate the potential of chiral waveguides for quantum entanglement protocols.Comment: 5 pages + 1 page supplemental, 4 figure

    Pulmonary function of a paediatric cohort of patients with postinfectious bronchiolitis obliterans. A long term follow-up

    Get PDF
    Background: Postinfectious bronchiolitis obliterans (BO) is a chronic respiratory disease that usually follows a severe adenovirus infection. Objective: To determine the evolution of pulmonary function and clinical outcome of children with postinfectious BO during childhood. Methods: The study included patients diagnosed with postinfectious BO in whom at least two spirometries were performed within a minimum interval of 3 months. Results: 46 met the inclusion criteria. The mean (±SD) follow-up period was 12.5 (±3.5) years. 197 spirometries and 41 plethysmographies were performed. Initial (9±3 years old) lung function was as follows (z score, mean±SD): forced vital capacity (FVC) - 3.8±1; forced expiratory volume in 1 s (FEV1) -4.4±1; FEV1/FVC -2.2±1; forced expiratory flow (FEF)25-75 -3.7±1; total lung capacity (TLC) 120±26%; residual volume (RV) 309±108%; and RV/TLC 55±13. During childhood, FVC and FEV1 increased by a mean of 11%/year (95% CI 9.3% to 12.6%; p\u3c0.0001) and 9%/year (95% CI 7.7% to 10.2%; p\u3c0.0001), and the FEV1/FVC ratio decreased by 1.9%/year (95% CI 1% to 2.8; p\u3c0.001). The z score for FVC, FEV1 and FEV1/FVC decreased by 0.07 z score/year (95% CI 0.1 to 0.01; p\u3c0.05), 0.09 z score/year (95% CI 0.1 to 0.05; p\u3c0.01) and 0.04 z score/year (95% CI 0.09 to 0.001; p\u3c0.02), respectively. During the follow-up period, 69% of patients required at least one hospital readmission and five required mechanical ventilation. Nine patients developed a thoracic deformity, and seven whose bronchiectasis did not respond to clinical treatment underwent a lobectomy. Conclusions: After a 12 year follow-up period, pulmonary function remained severely impaired, showing an obstructive pattern with air trapping that slowly improved during childhood. An unequal growth of lung parenchyma over the airways suggests dysinaptic growth. Patients required frequent readmission due to recurrent respiratory infections, and hypoxaemia improved slowly over time

    Construction and Calibration of a Low-Cost 3D Laser Scanner with 360â—¦ Field of View for Mobile Robots

    Get PDF
    Navigation of many mobile robots relies on environmental information obtained from three-dimensional (3D) laser scanners. This paper presents a new 360◦ field-of-view 3D laser scanner for mobile robots that avoids the high cost of commercial devices. The 3D scanner is based on spinning a Hokuyo UTM- 30LX-EX two-dimensional (2D) rangefinder around its optical center. The proposed design profits from lessons learned with the development of a previous 3D scanner with pitching motion. Intrinsic calibration of the new device has been performed to obtain both temporal and geometric parameters. The paper also shows the integration of the 3D device in the outdoor mobile robot Andabata.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Algorithm Refinement for Fluctuating Hydrodynamics

    Get PDF
    This paper introduces an adaptive mesh and algorithm refinement method for fluctuating hydrodynamics. This particle-continuum hybrid simulates the dynamics of a compressible fluid with thermal fluctuations. The particle algorithm is direct simulation Monte Carlo (DSMC), a molecular-level scheme based on the Boltzmann equation. The continuum algorithm is based on the Landau–Lifshitz Navier–Stokes (LLNS) equations, which incorporate thermal fluctuations into macroscopic hydrodynamics by using stochastic fluxes. It uses a recently developed solver for the LLNS equations based on third-order Runge–Kutta. We present numerical tests of systems in and out of equilibrium, including time-dependent systems, and demonstrate dynamic adaptive refinement by the computation of a moving shock wave. Mean system behavior and second moment statistics of our simulations match theoretical values and benchmarks well. We find that particular attention should be paid to the spectrum of the flux at the interface between the particle and continuum methods, specifically for the nonhydrodynamic (kinetic) time scales
    • …
    corecore