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Stochastic Hard-Sphere Dynamics for Hydrodynamics of Nonideal Fluids 

Aleksandar Donev,1 Berni J. Alder,1 and Alejandro L. Garcia2 

1Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-9900, USA 
2Department of Physics, San Jose State University, San Jose, California 95192, USA 

(Received 3 March 2008; published 15 August 2008) 

A novel stochastic fluid model is proposed with a nonideal structure factor consistent with compressi
bility, and adjustable transport coefficients. This stochastic hard-sphere dynamics (SHSD) algorithm is a 
modification of the direct simulation Monte Carlo algorithm and has several computational advantages 
over event-driven hard-sphere molecular dynamics. Surprisingly, SHSD results in an equation of state and 
a pair correlation function identical to that of a deterministic Hamiltonian system of penetrable spheres 
interacting with linear core pair potentials. The fluctuating hydrodynamic behavior of the SHSD fluid is 
verified for the Brownian motion of a nanoparticle suspended in a compressible solvent. 

DOI: 10.1103/PhysRevLett.101.075902 PACS numbers: 65.20.De, 02.70.Ns 

With the increased interest in nanofluidics and micro-
fluidics, it has become necessary to develop tools for 
hydrodynamic calculations at the atomistic scale [1,2]. 
Of particular interest is the modeling of flexible polymers 
in a flowing solvent for both biological (e.g., cell mem
branes) and engineering (e.g., microchannel DNA arrays) 
applications. Typically the polymer chains are modeled 
using molecular dynamics (MD). For many applications, 
a realistic representation of the solvent and bidirectional 
coupling between the flow and the polymer motion is 
needed, for example, in the modeling of turbulent drag re
duction. Previously, we introduced the stochastic event-
driven molecular dynamics (EDMD) algorithm that uses 
direct simulation Monte Carlo (DSMC) calculations for the 
solvent coupled to deterministic EDMD for the polymer 
chain [3]. However, the DSMC algorithm is limited to per
fect gases. Efforts have been undertaken to develop sol
vents that have a nonideal equation of state and that also 
have greater computational efficiency than brute-force mo
lecular dynamics. Examples include the lattice Boltzmann 
method [4], dissipative particle dynamics (DPD) [5], and 
multiparticle collision dynamics [6], each of which has its 
own advantages and disadvantages [1]. The stochastic 
hard-sphere dynamics (SHSD) algorithm described in 
this Letter is based on successive stochastic collisions of 
variable hard-sphere diameters and is thermodynamically 
consistent (i.e., the direct calculation of compressibility 
from density fluctuations agrees with the density derivative 
of pressure). SHSD modifies previous algorithms for solv
ing the Enskog kinetic equation [7,8] while maintaining 
good efficiency. 

In the SHSD algorithm, randomly chosen pairs of ap
proaching particles that lie less than a given diameter of 
each other undergo collisions as if they were hard spheres 
of diameter equal to their actual separation. The SHSD 
fluid is shown to be nonideal, with structure and equation 
of state equivalent to that of a fluid mixture where spheres 
effectively interact with a repulsive linear core pairwise 
potential. We theoretically demonstrate this correspon
dence at low densities. Remarkably, we numerically find 

that this effective interaction potential, similar to the qua
dratic core potential used in many DPD variants, is valid at 
all densities. Therefore, the SHSD fluid, as DPD, is in
trinsically thermodynamically consistent, while nonideal 
multiparticle collision dynamics is only numerically ther
modynamically consistent for tuned choices of the parame
ters [6,9]. 

As an algorithm, SHSD is similar in nature to DPD and 
has a similar computational complexity. The essential dif
ference is that DPD has a continuous-time formulation, 
where as the SHSD dynamics is discontinuous in time. 
This is similar to the difference between MD for continu
ous potentials and discontinuous potentials. Just as the 
DSMC algorithm is a stochastic alternative to hard-sphere 
MD for low-density gases, SHSD is a stochastic modifica
tion of hard-sphere MD for dense gases. 

The SHSD algorithm is not as efficient as the DSMC 
algorithm at a comparable collision rate. However, when 
low compressibility is desired, SHSD is several times 
faster than EDMD for hard spheres, the fastest available 
deterministic alternative. Low compressibility, for ex
ample, is desirable so that flows are kept subsonic even for 
high Reynolds number flows. Furthermore, SHSD has 
several important advantages over EDMD, in addition to 
its simplicity: (1) SHSD has several controllable parame
ters that can be used to change the transport coefficients 
and compressibility, while EDMD only has density; 
(2) SHSD is time driven rather than event driven, thus 
allowing for easy parallelization. (3) Because the SHSD 
fluid is weakly structured, an SHSD domain can be more 
easily coupled to continuum hydrodynamic solvers, just as 
for ideal-gas DSMC [10] and DPD fluids [2]. 

The standard DSMC algorithm [11] starts with a time 
step where particles are propagated advectively, r0 i = ri + 
vi/t, and sorted into a grid of cells. Then, a certain number 
Ncoll � fscNc(Nc - 1)/t of stochastic collisions are exe
cuted between pairs of particles randomly chosen from the 
Nc particles inside the cell. The conservative stochastic 
collisions exchange momentum and energy between two 
particles i and j that is not correlated with the actual 
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positions of the particles. Typically the probability of 
collision is made proportional to the magnitude of the 
relative velocity vr = jvijj by using a conventional rejec
tion procedure. The DSMC algorithm, unlike MD, is not 
microscopically isotropic and does not conserve angular 
momentum, leading to an anisotropic stress tensor. To 
avoid such grid artifacts, all collision partners within a 
collision diameter D must be considered even if they are 
in neighboring cells, and, if angular momentum conserva
tion is required, only radial momentum should be ex
changed in collisions as for hard spheres. This grid-free 
variant will be called isotropic DSMC (I-DSMC). The cost 
is that the computational efficiency is reduced by a factor 
of 2–3 due to the need to perform neighbor searches. Note 
that a pairwise Anderson thermostat proposed within the 
context of MD/DPD in Ref. [12] essentially adds (thermo-
stated) I-DSMC collisions to ordinary MD and has a very 
similar computational behavior. As in I-DSMC collisions, 
in SHSD we consider particles in neighboring cells as 
collision partners in order to ensure isotropy of the colli
sional (nonideal) component of the pressure tensor. 

The virial h/vij ./riji vanishes in I-DSMC collisions 
giving an ideal-gas pressure. In order to introduce a non
trivial equation of state, it is necessary either to give an 
additional displacement to the particles that is parallel to 
/vij, or to bias the momentum exchange /vij to be (sta
tistically) aligned to /rij. The former approach has already 
been investigated in the consistent Boltzmann algorithm 
[13]; however, the consistent Boltzmann algorithm is not 
thermodynamically consistent since it modifies the com
pressibility without affecting the density fluctuations (i.e., 
the structure of the fluid is still that of a perfect gas). A 
fully consistent approach requires that the particles collide 
as if they are elastic hard spheres of diameter equal to the 
distance between them at the time of the collision. Such 
collisions produce a positive virial only if the particles are 
approaching each other, vn = -vij . r̂ij > 0; therefore, we 
reject collisions among particles that are moving apart. 
Furthermore, as for hard spheres, it is necessary to collide 
pairs with probability that is linear in vn, which requires a 
further increase of the rejection rate and thus a decrease of 
the efficiency. Without rejection based on vn or vr, fluc
tuations of the local temperature Tc would not be consis
tently coupled to the local pressure pc �h/vij ./rijicpccccc pccccc
fsc Tc because pc would be Tc instead of the neces
sary pc Tc. For DSMC calculations, the collisional rules 
can be manipulated arbitrarily to obtain the desired trans
port coefficients; however, for nonideal fluids thermody
namic requirements eliminate some of the freedom. This 
important observation has not been taken into account in 
other algorithms that randomize hard-sphere MD [14]. 
Note that one can in fact add I-DSMC collisions to 
SHSD in order to tune the viscosity without affecting the 
compressibility. 

For sufficiently small time steps, the SHSD fluid can be 
considered as a simple modification of the standard hard-

sphere fluid. Particles move ballistically in between colli
sions. When two particles i and j are less than a diameter 
apart, rij s D, there is a probability rate (3x=D)vn0(vn)

for them to collide as if they were elastic hard spheres with 
a variable diameter DS = rij. Here 0 is the Heaviside 
function, and x is a dimensionless parameter determining 
the collision frequency. The prefactor 3=D has been chosen 
so that for an ideal gas the average collisional rate would be 
x times larger than that of a low-density hard-sphere gas 
with density (volume fraction) ¢ = 7ND3=(6V). 

In order to understand the properties of the SHSD fluid 
as a function of ¢ and x, we consider the equilibrium pair 
correlation function g2 at low densities, where correlations 
higher than pairwise can be ignored. We consider the cloud 
of point walkers ij representing the N(N - 1)=2 pairs of 
particles, each at position r = ri - rj and with velocity 
v = vi - vj. At equilibrium, the distribution of the point 
walkers in phase space will be f(v; r) = f(vr; r)� g2(r)X

2exp(-mvn =4kT). Inside the core r <  D  this distribution of 
pair walkers satisfies a kinetic equation 

@f @f 
+ vn = vnf0f;

@t @r 

where f0 = 3x=D is the collision frequency. At equilib
rium, @f=@t = 0 and vn cancels, consistent with choosing 
collision probability linear in jvnj. Thus dg2=dx = 
3xg20(1 - x) with the solution g2(x) = exp[3x(x- 1)]
for x s 1 and g2(x) = 1 for x > 1, where x = r=D. 
Indeed, numerical experiments confirmed that at suffi
ciently low densities the equilibrium g2 for the SHSD fluid 
has this exponential form inside the collision core. This 

Ulow-density result is equivalent to g = exp[-U(r)=kT],2 
where U(r)=kT = 3x(1 - x)0(1- x) is an effective lin
ear core pair potential similar to the quadratic core poten
tial used in DPD. Remarkably, it was found numerically 
that this repulsive potential can predict exactly g2(x) at all 
liquid densities. Figure 1 shows a comparison between the 
pair correlation function of the SHSD fluid on one hand, 
and a Monte Carlo (MC) calculation using the linear core 
pair potential on the other, at several densities. Also shown 
is a numerical solution to the hypernetted chain (HNC) 
integral equations for the linear core system, inspired by its 
success for the Gaussian core model [15]. The excellent 
agreement at all densities permits the use of the HNC result 
in practical applications, notably the calculation of the 
transport coefficients. 

Interestingly, in the limit x ! 1 the SHSD algorithm 
reduces to hard-sphere MD. For higher densities, if x is 
sufficiently high, crystallization is observed in SHSD, 
either to the usual hard-sphere crystals if ¢ is lower than 
the close-packing density, or if not, to an unusual partially 
ordered state with multiple occupancy per site, typical of 
weakly repulsive potentials. 

An exact Bogoliubov-Born-Green-Kirkwood-Yvon– 
like hierarchy of Master equations for the s-particle distri
bution functions of the SHSD fluid is given in Ref. [16]. 
For the first equation of the hierarchy, valid at low den
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FIG. 1 (color online). Equilibrium pair correlation function of 
the SHSD fluid (solid symbols), compared to MC (open sym
bols) and HNC calculations (solid lines) for the linear core 
system, at various densities and x = 1. 

sities, we can neglect correlations other than pair ones and 
approximate f2(r1; v1; r2; v2) = g2(r12)f1(r1; v1)f(r2; v2). 
With this assumption we obtain a stochastic Enskog equa
tion similar to a revised Enskog equation for hard spheres 
but with a smeared distribution of hard-sphere diameters, 
as studied in Ref. [17]. The Chapman-Enskog expansion 
carried out in Ref. [17] produces the equation of state p = 
PV=NkT, and approximations to the self-diffusion co
efficient ( , the shear Y and bulk YB viscosities, and ther
mal conductivity K of the SHSD fluid. The expressions 
ultimately give the transport coefficients in terms of vari-R

1 kous integer moments of g2(x), xk = 0 x g2(x)dx, specifipcccc 
cally, p-1=12¢xx3, (=(0 = 7=(48¢xx2), YB=Y0 = 

48¢2xx4=73=2, and 
c1Y=Y0 or K=K0 =pcccc (1+c2¢xx3)2 +c3YB=Y0; 7
xx2 

pccccccccccccc pcccccccccc 
2 where (0 = D kT=m, Y0 = D- mkT, and K0 = pccccccccccccc 

2 c2 = kD- kT=m are natural units, and c1 = 5=48, 
24=5, and c3 = 3=5 for Y, while c1 = 25=64, c2 = 24=5, 
and c3 = 3=5 for K. 

The above formula for the pressure is exact and is 
equivalent to the virial theorem for the linear core poten
tial, and thus thermodynamic consistency between g2(x)
and p(¢) is guaranteed. In the inset in the top panel of 
Fig. 2, we directly demonstrate the thermodynamic con
sistency of SHSD by comparing the compressibility calcu

-1lated from the equation of state, Sc = (p +¢dp=d¢) , 
to the structure factor at the origin S0 = S(! = 0; k  = 0). 
Furthermore, good agreement is found between the adia

2 1 2batic speed of sound cs = S- + 2p =3 and the location of 0 
the Brillouin lines in the dynamic structure factor S(!; k)
for small k values. In Fig. 2, we also compare the theoreti
cal predictions for Y utilizing the HNC approximation for 
g2 to the ones directly calculated from SHSD. Surprisingly, 
good agreement is found for the shear viscosity at all 
densities. The corresponding results for ( show significant 
( 25%) deviations for the self-diffusion coefficient at 
higher densities because of corrections due to higher-order 
correlations. 

As an illustration of the correct hydrodynamic behavior 
of the SHSD fluid and the significance of compressibility, 
we study the velocity autocorrelation function (VACF) 
C(t) = hvx(0)vx(t)i for a single neutrally buoyant hard 
sphere of mass m and radius R suspended in an SHSD 
fluid of mass density p. This problem is relevant to the 
modeling of polymer chains or (nano)colloids in solution 
and led to the discovery of a long power-law tail in C(t)
[18,19]. Here the solvent-solvent particles interact as in 
SHSD. The solvent-solute interaction is treated as if the 
SHSD particles are hard spheres of diameter Ds, chosen to 
be somewhat smaller than their interaction diameter with 
other solvent particles (specifically, we use Ds = D=4) for 
computational efficiency reasons, using an event-driven 
algorithm [3]. Upon collision the relative velocity of the 
solvent particle is reversed in order to provide a no-slip 
condition at the surface of the suspended sphere [3,18] (slip 
boundaries give qualitatively identical results). For com
parison, an ideal solvent of comparable viscosity is also 
simulated. 
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FIG. 2 (color online). Comparison between numerical results 
for SHSD at several collision frequencies (different symbols) 
with predictions based on the stochastic Enskog equation using 
the HNC g2(x) (solid lines). The low-density approximations are 
also indicated (dashed lines). Top panel: Normalized equation of 
state. The inset compares the compressibility (pressure deriva
tive, dashed lines) to the structure factor at the origin S(k ! 0)
(symbols), measured using a direct Fourier transform of the 
particle positions for small k and extrapolating to k = 0. 
Bottom panel: The shear viscosity at high and low densities 
(inset), as measured using an externally forced Poiseuille flow. 
There are significant corrections (Knudsen regime) for large 
mean free paths (i.e., at low densities and low collision rates). 
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FIG. 3 (color online). The velocity autocorrelation function for 
a neutrally buoyant hard sphere suspended in a nonideal SHSD 
(x 1) solvent at two densities (symbols), as well as an ideal I
DSMC 

=
solvent (¢ = 0:5, x = 0:62, symbols), at short and long 

times (inset). For the more compressible (less viscous) fluids the 
long-time tails are statistically measurable only up to t=tvisc 5. 
The theoretical predictions based on the inviscid (for short times) 

=

or incompressible (for long times) Navier-Stokes equations are 
also shown (lines). The diameter of the nanocolloidal particle is 
only 2:5D, although we have performed simulations using larger 
spheres as well with very similar results. Since periodic bound
ary conditions were used, we show only the tail up to about the 
time at which sound waves generated by its periodic images 
reach the particle, tL = L=cs. 

Theoretically, C(t) has been calculated from the linear
ized (compressible) fluctuating Navier-Stokes equations 
[18]. The results are analytically complex even in the 
Laplace domain; however, at short times an inviscid com
pressible approximation applies. At large times the com
pressibility does not play a role, and the incompressible 
Navier-Stokes equations can be used to predict the long
time tail. At short times, t<tc =2R=cs, the major effect of 
compressibility is that sound waves generated by the mo
tion of the suspended particle carry away a fraction of the 
momentum, so that the VACF quickly decays from its ini
tial value C(0) = kT=m to C(tc) = kT=M, where M m
27R3p=3. At long times, t > t 2 

visc = 4pRH =3Y, the 
=
VACF 

+ 

decays as in an incompressible fluid, with an asymptotic 
power-law tail 

p
(kT=m)(8 

cccccc
37

c 
)-1(t=t 3

visc)
- =2, in disagree

ment with predictions based on the Langevin equation 
(Brownian dynamics), C t kT=m exp 67RHYt=m . 
We have estimated the ef

(
fectiv
)= (

e (hydrodynamic) 
) (-

colloid 
)

radius RH from numerical measurements of the Stokes 
friction force F = -67RHYv. 

In Fig. 3 numerical results for the VACF for an I-DSMC 
solvent and an SHSD solvent at two different densities are 
compared to the theoretical predictions. It is seen, as 
predicted, that the compressibility or the sound speed cs 
determines the early decay of the VACF. The exponent of 
the power-law decay at large times is also in agreement 
with the hydrodynamic predictions. The coefficient of the 
VACF tail agrees reasonably well with the hydrodynamic 
prediction for the less dense solvents; however, there is a 
significant deviation of the coefficient for the densest 

solvent, perhaps due to ordering of the fluid around the 
suspended sphere, not accounted for in continuum theory. 

In closing, we should point out that for reasonable values 
of the collision frequency (x 

ely 
� 1) and density (¢ 

SHSD fluid is still relativ compressible compared 
� 1) the 

to a 
dense liquid, c2 s < 10. Similarly, the Schmidt number Sc 
Y(p()-1 is less than 10 instead of being on the order of 

= 

100–1000. Achieving higher cs or Sc requires high colli
sion rates (for example, x � 104 is used in Ref. [12]) and 
appropriately smaller time steps to ensure that there is at 
most one collision per particle per time step, and thus a 
similar computational effort as in molecular dynamics. The 
advantage of SHSD is its simplicity, easy parallelization, 
and simpler coupling to continuum methods such as fluc
tuating hydrodynamics [10].
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