54 research outputs found

    Model Systems of Precursor Cellular Membranes: Long-Chain Alcohols Stabilize Spontaneously Formed Oleic Acid Vesicles

    Get PDF
    AbstractOleic acid vesicles have been used as model systems to study the properties of membranes that could be the evolutionary precursors of more complex, stable, and impermeable phospholipid biomembranes. Pure fatty acid vesicles in general show high sensitivity to ionic strength and pH variation, but there is growing evidence that this lack of stability can be counterbalanced through mixtures with other amphiphilic or surfactant compounds. Here, we present a systematic experimental analysis of the oleic acid system and explore the spontaneous formation of vesicles under different conditions, as well as the effects that alcohols and alkanes may have in the process. Our results support the hypothesis that alcohols (in particular 10- to 14-C-atom alcohols) contribute to the stability of oleic acid vesicles under a wider range of experimental conditions. Moreover, studies of mixed oleic-acid-alkane and oleic-acid-alcohol systems using infrared spectroscopy and Langmuir trough measurements indicate that precisely those alcohols that increased vesicle stability also decreased the mobility of oleic acid polar headgroups, as well as the area/molecule of lipid

    Electronic transport and vibrational modes in the smallest molecular bridge: H2 in Pt nanocontacts

    Full text link
    We present a state-of-the-art first-principles analysis of electronic transport in a Pt nanocontact in the presence of H2 which has been recently reported by Smit et al. in Nature 419, 906 (2002). Our results indicate that at the last stages of the breaking of the Pt nanocontact two basic forms of bridge involving H can appear. Our claim is, in contrast to Smit et al.'s, that the main conductance histogram peak at G approx 2e^2/h is not due to molecular H2, but to a complex Pt2H2 where the H2 molecule dissociates. A first-principles vibrational analysis that compares favorably with the experimental one also supports our claim .Comment: 5 pages, 3 figure

    Detection system of magnetic nanoparticles in biological tissues by Magnetoencephalography

    Get PDF
    Magnetic nanoparticles are useful for a wide range of applications from data storage to medical imaging. Their unique features (controllable size in the nanoscale range, possibility to be coated with biological molecules, response to the application of a magnetic field...) make the development of a variety of medical applications possible, both for diagnosis and therapy [1-3]. On the other hand, Magnetoencephalography (MEG) is a non-invasive functional imaging technique that enables the description of the temporal and spatial patterns of brain activity in resting conditions or related to different basic cognitive processes, by detecting the weak magnetic fields generated by currents in the neurons [4,5]. The detection of the weak magnetic fields depends on gradiometer detection coils coupled to a superconducting quantum interference device (SQUID). However, MEG systems are not currently being used for the detection of MNPs in biological tissues. A system to newly detect Magnetic Nanoparticles (MNPs) in the brain and in biological tissues will be described. The method uses a commercial Magnetoencephalograph (MEG) and opens new possibilities to extend the use of MEG systems to new applications for both diagnosis and therapy of medical diseases, different from its common use in neurological diagnosis. To test the validity of the system, in this work, we will show its ability to detect MNPs in biological tissues and their possible use in diagnosis of cerebral brain microinjurie

    The Role of N Plant Glycosilation in act d 2 allergenicity.

    Get PDF
    Plant allergens have hitherto been included in only several protein families that share no common biochemical features. Their physical, biochemical and immunological characteristics have been widely studied, but no definite conclusion has been reached about what makes a protein an allergen. N-glycosylation is characteristic of plant allergen sources but is not present in mammals

    Overview of recent TJ-II stellarator results

    Get PDF
    The main results obtained in the TJ-II stellarator in the last two years are reported. The most important topics investigated have been modelling and validation of impurity transport, validation of gyrokinetic simulations, turbulence characterisation, effect of magnetic configuration on transport, fuelling with pellet injection, fast particles and liquid metal plasma facing components. As regards impurity transport research, a number of working lines exploring several recently discovered effects have been developed: the effect of tangential drifts on stellarator neoclassical transport, the impurity flux driven by electric fields tangent to magnetic surfaces and attempts of experimental validation with Doppler reflectometry of the variation of the radial electric field on the flux surface. Concerning gyrokinetic simulations, two validation activities have been performed, the comparison with measurements of zonal flow relaxation in pellet-induced fast transients and the comparison with experimental poloidal variation of fluctuations amplitude. The impact of radial electric fields on turbulence spreading in the edge and scrape-off layer has been also experimentally characterized using a 2D Langmuir probe array. Another remarkable piece of work has been the investigation of the radial propagation of small temperature perturbations using transfer entropy. Research on the physics and modelling of plasma core fuelling with pellet and tracer-encapsulated solid-pellet injection has produced also relevant results. Neutral beam injection driven Alfvénic activity and its possible control by electron cyclotron current drive has been examined as well in TJ-II. Finally, recent results on alternative plasma facing components based on liquid metals are also presented. ISSN:0029-5515 ISSN:1741-432

    Demonstration of reduced neoclassical energy transport in Wendelstein 7-X

    Get PDF

    Latest physics results of TJ-II flexible heliac

    No full text
    This paper is devoted to the presentation of the most relevant recent Physics results obtained in the TJ-II flexible heliac. Firstly ECRH modulation and plasma breakdown studies are summarised; then the particle control techniques used to obtain reproducible discharges with density under control are presented. Transport studies show internal heat transport barriers that reduce heat conductivity to neoclassical values, and ELM-like transport events, similar to those observed in tokamaks and in other stellarators before and during H mode transition. Evidence of ExB sheared has been observed both in the proximity of rational surfaces. Finally, a high resolution Thomsom Scattering system has shown Te and ne profile structures
    corecore